Skip to main content Accessibility help
×
Home

CHARACTERIZING DOWNWARDS CLOSED, STRONGLY FIRST-ORDER, RELATIVIZABLE DEPENDENCIES

  • PIETRO GALLIANI (a1)

Abstract

In Team Semantics, a dependency notion is strongly first order if every sentence of the logic obtained by adding the corresponding atoms to First-Order Logic is equivalent to some first-order sentence. In this work it is shown that all nontrivial dependency atoms that are strongly first order, downwards closed, and relativizable (in the sense that the relativizations of the corresponding atoms with respect to some unary predicate are expressible in terms of them) are definable in terms of constancy atoms.

Additionally, it is shown that any strongly first-order dependency is safe for any family of downwards closed dependencies, in the sense that every sentence of the logic obtained by adding to First-Order Logic both the strongly first-order dependency and the downwards closed dependencies is equivalent to some sentence of the logic obtained by adding only the downwards closed dependencies.

Copyright

References

Hide All
[1]Armstrong, W. W., Dependency structures of data base relationships, Proceedings of IFIP World Computer Congress (Rosenfeld, J. L., editor), North-Holland, Amsterdam, 1974, pp. 580583.
[2]Barbero, F., Some observations about generalized quantifiers in logics of imperfect information, arXiv preprint, 2017, arXiv:1709.07301.
[3]Casanova, M. A., Fagin, R., and Papadimitriou, C. H., Inclusion dependencies and their interaction with functional dependencies, Proceedings of the 1st ACM Sigact-Sigmod Symposium on Principles of Database Systems, PODS ’82, ACM, 1982, New York, NY, USA, pp. 171176.
[4]Chang, C. C., Some new results in definability. Bulletin of the American Mathematical Society, vol. 70 (1964), no. 6, pp. 808813.
[5]Chang, C. C. and Keisler, H. J., Model Theory, Studies in Logic and the Foundations of Mathematics, vol. 73, Elsevier, Amsterdam, 1990.
[6]Codd, E. F., Further normalization of the data base relational model, Data Base Systems (Rustin, R., editor), Prentice-Hall, New York, 1972, pp. 3364.
[7]Durand, A., Ebbing, J., Kontinen, J., and Vollmer, H., Dependence logic with a majority quantifier. Journal of Logic, Language and Information, vol. 24 (2015), no. 3, pp. 289305.
[8]Durand, A. and Kontinen, J., Hierarchies in dependence logic. ACM Transactions on Computational Logic, vol. 13 (2012), no. 4, pp. 31:1–31:21.
[9]Durand, A., Kontinen, J., and Vollmer, H., Expressivity and complexity of dependence logic, Dependence Logic (Abramsky, S., Kontinen, J., Väänänen, J., and Vollmer, H., editors), Springer, Cham, 2016, pp. 532.
[10]Engström, F., Generalized quantifiers in dependence logic. Journal of Logic, Language and Information, vol. 21 (2012), no. 3, pp. 299324.
[11]Engström, F., Kontinen, J., and Väänänen, J., Dependence logic with generalized quantifiers: Axiomatizations. Journal of Computer and System Sciences, vol. 88 (2017), pp. 90102.
[12]Fagin, R., Multivalued dependencies and a new normal form for relational databases. ACM Transactions on Database Systems, vol. 2 (1977), pp. 262278.
[13]Galliani, P., Inclusion and exclusion dependencies in team semantics: On some logics of imperfect information. Annals of Pure and Applied Logic, vol. 163 (2012), no. 1, pp. 6884.
[14]Galliani, P., The doxastic interpretation of team semantics, Logic Without Borders: Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics (Hirvonen, Å., Kontinen, J., Kossak, R., and Villaveces, A., editors), Ontos Mathematical Logic, vol. 5, Walter de Gruyter, Berlin, 2015, pp. 167191.
[15]Galliani, P., Upwards closed dependencies in team semantics. Information and Computation, vol. 245 (2015), pp. 124135.
[16]Galliani, P., On strongly first-order dependencies, Dependence Logic (Abramsky, S., Kontinen, J., Väänänen, J., and Vollmer, H., editors), Springer, Cham, 2016, pp. 5371.
[17]Galliani, P., Safe Dependency Atoms and Possibility Operators in Team Semantics, Proceedings Ninth International Symposium on Games, Automata, Logics, and Formal Verification, GandALF 2018 (Orlandini, A. and Zimmermann, M., editors), Open Publishing Association, 2018, pp. 5872.
[18]Galliani, P., Hannula, M., and Kontinen, J., Hierarchies in independence logic, Computer Science Logic 2013 (CSL 2013) (Rocca, S. R. D., editor), Leibniz International Proceedings in Informatics (LIPIcs), vol. 23, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2013, pp. 263280.
[19]Galliani, P. and Hella, L., Inclusion logic and fixed point logic, Computer Science Logic 2013 (CSL 2013) (Rocca, S. R. D., editor), Leibniz International Proceedings in Informatics (LIPIcs), vol. 23, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2013, pp. 281295.
[20]Grädel, E. and Väänänen, J., Dependence and independence. Studia Logica, vol. 101 (2013), no. 2, pp. 399410.
[21]Hannula, M., Axiomatizing first-order consequences in independence logic. Annals of Pure and Applied Logic, vol. 166 (2015), no. 1, pp. 6191.
[22]Hannula, M., Hierarchies in inclusion logic with lax semantics. ACM Transactions on Computational Logic (TOCL), vol. 19 (2018), no. 3, p. 16.
[23]Hintikka, J., The Principles of Mathematics Revisited, Cambridge University Press, Cambridge, 1996.
[24]Hintikka, J. and Sandu, G., Informational independence as a semantic phenomenon, Logic, Methodology and Philosophy of Science (Fenstad, J. E., Frolov, I. T., and Hilpinen, R., editors), Elsevier, Amsterdam, 1989, pp. 571589.
[25]Hodges, W., A Shorter Model Theory, Cambridge University Press, Cambridge, 1997.
[26]Hodges, W., Compositional semantics for a language of imperfect information. Journal of the Interest Group in Pure and Applied Logics, vol. 5 (1997), no. 4, pp. 539563.
[27]Kontinen, J., Coherence and computational complexity of quantifier-free dependence logic formulas. Studia Logica, vol. 101 (2013), no. 2, pp. 267291.
[28]Kontinen, J., Definability of second order generalized quantifiers. Archive for Mathematical Logic, vol. 49 (2010), no. 3, pp. 379398.
[29]Kontinen, J., Kuusisto, A., and Virtema, J., Decidability of predicate logics with team semantics, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016) (Faliszewski, P., Muscholl, A., and Niedermeier, R., editors), Leibniz International Proceedings in Informatics (LIPIcs), vol. 58, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2016, pp. 60:1–60:14.
[30]Kontinen, J., Link, S., and Väänänen, J., Independence in database relations, Logic, Language, Information, and Computation (Libkin, L., Kohlenbach, U., and de Queiroz, R., editors), Springer, Cham, 2013, pp. 179193.
[31]Kontinen, J. and Nurmi, V., Team logic and second-order logic. Fundamenta Informaticae, vol. 106 (2011), no. 2–4, pp. 259272.
[32]Kontinen, J. and Väänänen, J., On definability in dependence logic. Journal of Logic, Language and Information, vol. 3 (2009), no. 18, pp. 317332.
[33]Kontinen, J. and Väänänen, J., A remark on negation of dependence logic. Notre Dame Journal of Formal Logic, vol. 52 (2011), no. 1, pp. 5565.
[34]Kontinen, J. and Väänänen, J., Axiomatizing first-order consequences in dependence logic. Annals of Pure and Applied Logic, vol. 164 (2013), no. 11, pp. 11011117.
[35]Kuusisto, A., A double team semantics for generalized quantifiers. Journal of Logic, Language and Information, vol. 24 (2015), no. 2, pp. 149191.
[36]Lück, M., Axiomatizations of team logics. Annals of Pure and Applied Logic, vol. 169 (2018), no. 9, pp. 928969.
[37]Mann, A. L., Sandu, G., and Sevenster, M., Independence-Friendly Logic: A Game-Theoretic Approach, Cambridge University Press, Cambridge, 2011.
[38]Rönnholm, R., Arity fragments of logics with team semantics, Ph.D. thesis, Tampere University, 2018.
[39]Väänänen, J., Dependence Logic, Cambridge University Press, Cambridge, 2007.
[40]Väänänen, J., Team logic, Interactive Logic. Selected Papers from the 7th Augustus de Morgan Workshop (van Benthem, J., Gabbay, D., and Löwe, B., editors), Amsterdam University Press, Amsterdam, 2007, pp. 281302.

Keywords

CHARACTERIZING DOWNWARDS CLOSED, STRONGLY FIRST-ORDER, RELATIVIZABLE DEPENDENCIES

  • PIETRO GALLIANI (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.