[1]Ambos-Spies, K., Kjos-Hanssen, B., Lempp, S., and Slaman, T. A., Comparing DNR and WWKL, this Journal, vol.69 (2004), pp. 1089–1104.

[2]Arslanov, M., Cooper, S. B., and Li, A., There is no low maximal d.c.e. degree—corrigendum, Mathematical Logic Quarterly, vol. 50 (2004), pp. 628–636.

[4]Cholak, P. A., Jockusch, C. G. Jr., and Slaman, T. A., On the strength of Ramsey's Theorem for pairs, this Journal, vol. 66 (2001), pp. 1–55.

[5]Cooper, S. B., Jump equivalence of the hyperhyperimune sets, this Journal, vol. 37 (1972), pp. 598–600. [6]Downey, R., Hirschfeldt, D. R., Lempp, S., and Solomon, R., A set with no infinite low subset in either it or its complement, this Journal, vol.66 (2001), pp. 1371–1381. [7]Downey, R. G., Computability theory and linear orderings, Handbook of recursive mathematics (Ershov, , Goncharov, , Nerode, , and Remmel, , editors), Studies in Logic and the Foundations of Mathematics, vol. 138–139, Elsevier, Amsterdam, 1998, pp. 823–976.

[8]Friedman, H., Systems of second order arithmetic with restricted induction I (abstract), this Journal, vol. 41 (1976), pp. 557–558.

[9]Giusto, M. and Simpson, S. G., Located sets and reverse mathematics, this Journal, vol. 65 (2000), pp. 1451–1480.

[10]Goncharov, S. S and Nurtazin, A. T., Constructive models of complete decidable theories, Algebra and Logic, vol. 12 (1973), pp. 67–77.

[11]Hájek, P., Interpretability and fragments of arithmetic, Arithmetic, Proof Theory, and Computational Complexity (Prague, 1991), Oxford Logic Guides, vol. 23, Oxford University Press, New York, 1993, pp. 185–196.

[12]Hájekand, P.Pudlák, P., Metamathematics of first-order arithmetic, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998, second printing.

[13]Harizanov, V. S., Turing degrees of certain isomorphic images of computable relations., Annals of Pure and Applid Logic, vol. 93 (1998), pp. 103–113.

[14]Herrmann, E., Infinite chains and antichains in computable partial orderings, this Journal, vol. 66 (2001), pp. 923–934.

[15]Hirschfeldt, D.R., Jockusch, C. G. Jr., Kjos-Hanssen, B., Lempp, S., and Slaman, T.A., *Some remarks on the proof-theoretic strength of some combinatorial principles*, to appear in the proceedings of the Program on Computational Prospects of Infinity, Singapore 2005.

[16]Hirst, J., Combinatorics in subsystems of second order arithmetic, Ph.D. Dissertation, Pennsylvania State University, 1987.

[17]Jockusch, C.G. Jr., Ramsey's Theorem and recursion theory, this Journal, vol. 37 (1972), pp. 268–280.

[18]Jockusch, C.G. Jr. and Soare, R. I., classes and degrees of theories, Transactions of the American Mathematical Society, vol. 173 (1972), pp. 33–56. [19]Jockusch, C.G. Jr. and Stephan, F., A cohesive set which is not high, Mathematical Logic Quarterly, vol. 39 (1993), pp. 515–530, (correction in *Mathematical Logic Quarterly* vol. 43 (1997), p. 569).

[20]Lerman, M., On recursive linear orderings, Logic Year 1979–1980 (Lerman, , Schmerl, , and Soare, , editors), Lecture Notes in Mathematics, vol. 859, Springer-Verlag, Berlin, 1981, pp. 132–142.

[21]Mileti, J. R., Partition theorems and computability theory, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 2004.

[22]Mourad, J., Fragments of arithmetic and the foundations of the priority method, Ph.D. Dissertation, University of Chicago, 1988.

[23]Paris, J. B., A hierarchy of cuts in models of arithmetic, Model theory of algebra and arithmetic, Lecture Notes in Mathematics, vol. 834, Springer, Berlin-New York, 1980, pp. 312–337.

[24]Paris, J. B. and Kirby, L. A. S., Σ_{n}-collection schemas in arithmetic, Logic Colloquium '77, Studies in Logic and the Foundations of Mathematics, vol. 96, North-Holland, Amsterdam-New York, 1978, pp. 199–209.

[25]Rosenstein, J. G., Linear orderings, Pure and Applied Mathematics, vol. 98, Academic Press, New York etc, 1982.

[26]Seetapun, D. and Slaman, T. A., On the strength of Ramsey's Theorem, Notre Dame Journal of Formal Logic, vol. 36 (1995), pp. 570–582.

[27]Simpson, S. G., Degrees of unsolvability: a survey of results, Handbook of mathematical logic (Barwise, , editor), North-Holland, Amsterdam, 1977, pp. 631–652.

[28]Simpson, S. G., Subsystems of second order arithmetic, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1999.

[29]Simpson, S. G. and Yu, X., Measure theory and weak König's Lemma, Archive for Mathematical Logic, vol. 30 (1990), pp. 171–180.

[30]Specker, E., Ramsey's Theorem does not hold in recursive set theory, Logic Colloquium '69, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1971.

[31]Szpilrajn, E., Sur l'extension de l'ordre partiel, Fundamenta Mathematicae, vol. 16 (1930), pp. 386–389.