[1]Ambos-Spies, Klaus, Kjos-Hanssen, Bjørn, Lempp, Steffen, and Slaman, Theodore A., *Comparing DNR and WWKL*, this Journal, vol. 69 (2004), no. 4, pp. 1089–1104.

[2]Austen, Jane, Pride and Prejudice, Egerton, T., Whitehall, 1813.

[3]Bean, Dwight R., *Effective coloration*, this Journal, vol. 41 (1976), no. 2, pp. 469–480.

[4]Chong, C. T., Li, Wei, and Yang, Yue, *Nonstandard models in recursion theory and reverse mathematics*. Bulletin of Symbolic Logic, vol. 20 (2014), no. 2, pp. 170–200.

[5]Chong, C. T. and Mourad, K. J., Σ_{n}*definable sets without* Σ_{n}*induction*. Transactions of the American Mathematical Society, vol. 334 (1992), no. 1, pp. 349–363.

[6]Chong, C. T., Qian, Lei, Slaman, Theodore A., and Yang, Yue, Σ_{2}*induction and infinite injury priority arguments, part III: Prompt sets, minimal pairs and Shoenfield’s conjecture*. Israel Journal of Mathematics, vol. 121 (2001), pp. 1–28.

[7]Chong, C. T., Slaman, Theodore A., and Yang, Yue, ${\rm{\Pi }}_1^1$*-* *conservation of combinatorial principles weaker than Ramsey’s theorem for pairs*. Advances in Mathematics, vol. 230 (2012), no. 3, pp. 1060–1077. [8]Chong, C. T., Slaman, Theodore A., and Yang, Yue, *The metamathematics of stable Ramsey’s theorem for pairs*. Journal of the American Mathematical Society, vol. 27 (2014), no. 3, pp. 863–892.

[9]Chong, C. T., Slaman, Theodore A., and Yang, Yue, *The inductive strength of Ramsey’s theorem for pairs*, 2014, preprint.

[10]Chong, C. T., and Yang, Yue, Σ_{2}*induction and infinite injury priority arguments, Part II Tame* Σ_{2}*coding and the jump operator*. Annals of Pure and Applied Logic, vol. 87 (1997), no. 2, pp. 103–116.

[11]Chong, C. T., and Yang, Yue, Σ_{2}*induction and infinite injury priority argument, Part I: Maximal sets and the jump operator*, this Journal, vol. 63 (1998), no. 3, pp. 797–814.

[12]Chubb, Jennifer, Hirst, Jeffry L., and McNicholl, Timothy H., *Reverse mathematics, computability, and partitions of trees*, this Journal, vol. 74 (2009), no. 1, pp. 201–215.

[13]Corduan, Jared, Groszek, Marcia J., and Mileti, Joseph R., *Reverse mathematics and Ramsey’s property for trees*, this Journal, vol. 75 (2010), no. 3, pp. 945–954.

[14]Friedman, Harvey, *Some systems of second order arithmetic and their use*, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, 1975, pp. 235–242.

[15]Gasarch, William and Hirst, Jeffry L., *Reverse mathematics and recursive graph theory*. Mathematical Logic Quarterly. vol. 44 (1998), no. 4, pp. 465–473.

[16]Groszek, Marcia J., Mytilinaios, Michael E., and Slaman, Theodore A., *The Sacks density theorem and* Σ_{2}-*bounding*, this Journal, vol. 61 (1996), no. 2, pp. 450–467.

[17]Groszek, Marcia J. and Slaman, Theodore A., On Turing reducibility, 1994, preprint.

[18]Hájek, Petr, *Interpretability and fragments of arithmetic*, Arithmetic, proof theory, and computational complexity, 1993, pp. 185–196.

[19]Hájek, Petr, and Pudlák, Pavel, Metamathematics of First-Order Arithmetic. Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998.

[20]Hirst, Jeffry L., *Marriage theorems and reverse mathematics*, Logic and computation (Pittsburgh, PA, 1987), 1990, pp. 181–196.

[21]Jockusch, Carl G. Jr., *Degrees of functions with no fixed points*. Logic, Methodology and Philosophy of Science VIII, (1989), pp. 191–201.

[22]Jockusch, Carl G. Jr., and Soare, Robert I., ${\rm{\Pi }}_1^0$*classes and degrees of theories*. Transactions of the American Mathematical Society, vol. 173 (1972), pp. 33–56. [23]Mytilinaios, Michael E., *Finite injury and* Σ_{1}*-induction*, this Journal, vol. 54 (1989), no. 1, pp. 38–49.

[24]Schmerl, James H., *Graph coloring and reverse mathematics*. Mathematical Logic Quarterly, vol. 46 (2000), no. 4, pp. 543–548.

[25]Schmerl, James H., *Reverse mathematics and graph coloring: eliminating diagonalization*, Reverse mathematics 2001, 2005, pp. 331–348.

[26]Simpson, Stephen G., *Why the recursion theorists ought to thank me*, 2001.

[27]Simpson, Stephen G., Subsystems of Second Order Arithmetic, Cambridge University Press, Cambridge, 2009.

[28]Slaman, Theodore A., Σ_{n}-*Bounding and* Δ_{n}*-Induction*. Proceedings of the American Mathematical Society, vol. 132 (2004), no. 8, pp. 2449–2456.

[29]Slaman, Theodore A. and Hugh Woodin, W., Σ_{1}*-Collection and the finite injury priority method*. Mathematical logic and applications, 1989, 178–188.

[30]Soare, Robert I., Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1987.

[31]Yu, Xiaokang and Simpson, Stephen G., *Measure theory and weak König’s lemma*. Archive for Mathematical Logic, vol. 30 (1990), no. 3, pp. 171–180.