[1]Ash, C. J., Categoricity in hyperarithmetical degrees, Annals of Pure and Applied Logic, vol. 34 (1987), pp. 1–14.

[2]Ash, C. J. and Knight, J. F., Computable structures and the hyperarithmetic hierarchy, Elsivier Science, Amsterdam, 2000.

[3]Ash, C. J., Knight, J. F., Mannasse, M., and Slaman, T., Generic copies of countable structures, Annals of Pure and Applied Logic, vol. 42 (1989), pp. 195–205.

[4]Chisholm, J., *On intrisically* 1-*computable trees*, unpublished manuscript.

[5]Crossley, J. N., Manaster, A. B., and Moses, M. F., Recursive categoricity and recursive stability, Annals of Pure and Applied Logic, vol. 31 (1986), pp. 191–204.

[6]Downey, R. G., On presentations of algebraic structures, Complexity, logic, and recursion theory (Sorbi, A., editor), Dekker, New York, 1997, pp. 157–205.

[7]Downey, R. G. and Jockusch, C. G., Every low Boolean algebra is isomorphic to a recursive one, Proceedings of the American Mathematical Society, vol. 122 (1994), pp. 871–880.

[8]Goncharov, S. S., Autostability and computable families of constructivizations, Algebra and Logic, vol. 14 (1975), pp. 647–680 (Russian), 392–409 (English translation).

[9]Goncharov, S. S., The problem of the number of non-self-equivalent constructivizations, Algebra and Logic, vol. 19 (1980), pp. 401–414 (English translation).

[10]Goncharov, S. S., Groups with a finite number of constructivizations, Soviet Mathematics Doklady, vol. 19 (1981). pp. 58–61.

[11]Goncharov, S. S., Nonequivalent constructivizations, Nauka, Novosibirsk, 1982.

[12]Goncharov, S. S., Autostable models and algorithmic dimensions. Handbook of Recursive Mathematics, vol. 1, Elsevier, Amsterdam, 1998.

[13]Goncharov, S. S. and Dzgoev, V. D., Autostability of models, Algebra and Logic, vol. 19 (1980), pp. 45–58 (Russian), 28–37 (English translation).

[14]Goncharov, S. S., Lempp, S., and Solomon, R., The computable dimension of ordered abelian groups, Advances in Mathematics, vol. 175 (2003), pp. 102–143.

[15]Goncharov, S. S., Molokov, A. V., and Romanovskii, N. S., Nilpotent groups of finite algorithmic dimension, Siberian Mathematics Journal, vol. 30 (1989), pp. 63–68.

[16]Hirschfeldt, D. R., Khoussainov, B., Shore, R. A., and Slinko, A. M., Degree spectra and computable dimension in algebraic structures, Annals of Pure and Applied Logic, vol. 115 (2002), pp. 71–113.

[17]Khoussainov, B. and Shore, R. A., Computable isomorphisms, degree spectra of relations, and Scott families, Annals of Pure and Applied Logic, vol. 93 (1998), pp. 153–193.

[18]Khoussainov, B., Effective model theory: the number of models and their complexity, Models and computability: Invited papers from Logic Colloquium '97 (Cooper, S. B. and Truss, J. K., editors), London Mathematical Society Lecture Note Series, vol. 259, Cambridge University Press, Cambridge, 1999, pp. 193–240.

[19]Kruskal, J. B., Well quasi-ordering, the tree theorem, and Vázsonyi's conjecture, Transactions of the American Mathematical Society, vol. 95 (1960). pp. 210–225.

[20]Kudinov, O. V., *An integral domain with finite algorithmic dimension*, unpublished manuscript.

[21]Kudinov, O. V., An autostable 1-decidable model without a computable Scott family of ∃ formulas, A Igebra and Logic, vol. 35 (1996), pp. 255–260 (English translation).

[22]LaRoche, P., Recursively presented Boolean algebras, Notices of the American Mathematical Society, vol. 24 (1977), pp. A–552, research announcement.

[23]Metakides, G. and Nerode, A., Effective content offield theory, Annals of Mathematical Logic, vol. 17 (1979), pp. 289–320.

[24]Miller, R. G., The Δ_{2}^{0} spectrum of a linear order, this Journal, vol. 66 (2001), pp. 470–486.

[25]Miller, R. G., The computable dimension of trees of infinite height, this Journal, vol. 70 (2005). pp. 111–141.

[26]Nash-Williams, C. St. J. A., On well-quasi-ordering finite trees, Proceedings of the Cambridge Philosophical Society, vol. 59 (1963), pp. 833–835.

[27]Nurtazin, A. T., Strong and weak constructivizations and enumerable families, Algebra and Logic, vol. 13 (1974), pp. 177–184.

[28]Nurtazin, A. T., Computable classes and algebraic criteria of autostability, **thesis**, Mathematical Institute of the Siberian Branch of SSSR Academy of Sciences, Novosibirsk, 1974 (Russian).

[29]Remmel, J. B., Recursive isomorphism types of recursive Boolean algebras, this Journal, vol. 46 (1981), pp. 572–594.

[30]Remmel, J. B., Recursively categorical linear orderings, Proceedings of the American Mathematical Society, vol. 83 (1981), pp. 387–391.

[31]Simpson, S. G., Nonprovability of certain combinatorial properties of finite trees, Harvey Friedman's research on the foundations of mathematics (Harrington, L. A., Morley, M. D., Scedrov, A., and Simpson, S. G., editors), North-Holland, Amsterdam, 1985, pp. 87–117.

[32]Slaman, T. A., Relative to any nonrecursive set, Proceedings of the American Mathematical Society, vol. 126 (1998), pp. 2117–2122.

[33]Soare, R. I., Recursively enumerable sets and degrees, Springer-Verlag, New York, 1987.

[34]Wehner, S., Enumerations, countable structures, and Turing degrees, Proceedings of the American Mathematical Society, vol. 126 (1998), pp. 2131–2139.

[35]White, W., On the complexity of categoricity in computable structures, Mathematical Logic Quarterly, vol. 49 (2003), no. 6, pp. 603–614.