Skip to main content Accessibility help
×
Home

Decidable fragments of first-order modal logics

  • Frank Wolter (a1) and Michael Zakharyaschev (a2)

Abstract

The paper considers the set of first-order polymodal formulas the modal operators in which can be applied to subformulas of at most one free variable. Using a mosaic technique, we prove a general satisfiability criterion for formulas in , which reduces the modal satisfiability to the classical one. The criterion is then used to single out a number of new, in a sense optimal, decidable fragments of various modal predicate logics.

Copyright

References

Hide All
[1]Andréka, H., van Benthem, J., and Németi, I., Modal languages and bounded fragments of predicate logic, Journal of Philosophical Logic, vol. 27 (1998), pp. 217274.
[2]Artemov, S. and Dzhaparidze, G., Finite Kripke models and predicate logics of provability, this Journal, vol. 55 (1990), pp. 10901098.
[3]Baader, F. and Laux, A., Terminological logics with modal operators, Proceedings of the 14th International Joint Conference on Artificial Intelligence (Montreal, Canada), Morgan Kaufman, 1995, pp. 808814.
[4]Baader, F. and Ohlbach, H.J., A multi-dimensional terminological knowledge representation language, Journal of Applied Non-Classical Logic, vol. 5 (1995), pp. 153197.
[5]Behmann, H., Beiträge zur Algebra der Logik, inbesondere zum Entscheidungsproblem, Math. Ann., vol. 86 (1922), pp. 163229.
[6]Börger, E., Grädel, E., and Gurevich, Yu., The classical decision problem, Perspectives in Mathematical Logic, Springer, 1997.
[7]Brachman, R. J. and Schmölze, J.G., An overview of the KL-ONE knowledge representation system, Cognitive Science, vol. 9 (1985), pp. 171216.
[8]Calvanese, D., De Giacomo, G., Nardi, D., and Lenzerini, M., Reasoning in expressive description logics, Handbook of automated reasoning (Robinson, A. and Voronkov, A., editors), Elsevier Science Publishers B.V., 2000, In print.
[9]Chagrov, A.V. and Zakharyaschev, M.V., Modal logic, Oxford Logic Guides 35, Clarendon Press, Oxford, 1997.
[10]Fischer-Servi, G., The finite model property for MIPQ and some consequences, Notre Dame Journal of Formal Logic, vol. 19 (1978), pp. 687692.
[11]Gabbay, D. and Shehtman, V., Undecidubility of modal and intermediate first-order logics with two individual variables, this Journal, vol. 58 (1993), pp. 800823.
[12]Gabbay, D. and Shehtman, V., Products of modal logics. Part I, Journal of the IGPL, vol. 6 (1998), pp. 73146.
[13]Gabbay, D. and Shehtman, V., Products of modal logics. Part II, Journal of the IGPL, vol. 8 (2000).
[14]Ganzinger, H., Meyer, C., and Veanes, M., The two-variable guarded fragment with transitive relations, Proceedings of the 14th ieee symposium, 1999, pp. 2434.
[15]de Giacomo, G., Decidability of class-based knowledge representation formalisms, Ph.D. thesis, Univ. di Roma, 1995.
[16]de Giacomo, G. and Lenzerini, M., TBox and ABox reasoning in expressive description logics, Proceedings of the fifth conference on principles of knowledge representation and reasoning (Montreal, Canada), Morgan Kaufman, 1996.
[17]Gräber, A., Bürckert, H., and Laux, A., Terminological reasoning with knowledge and belief, Knowledge and belief in philosophy and artificial intelligence (Laux, A. and Wansing, H., editors), Akademie Verlag, 1995, pp. 2961.
[18]Grädel, E., Decision procedures for guarded logics, Automated Deduction—CADE-16, Proceedings ofthe 16th International Conference on Automated Deduction, Lecture Notes in Artificial Intelligence, vol. 1632, Springer, 1999.
[19]Grädel, E., On the restraining power of guards, this Journal, vol. 64 (1999), pp. 17191742.
[20]Harel, D., Effective transformations on infinite trees, with applications to high undecidability, dominoes, and fairness, Journal of the ACM, vol. 33 (1986), pp. 224248.
[21]Hirsch, R., Hodkinson, I., and Kurucz, A., Onmodal logics between K × K × K and S5 × S5 × S5, Manuscript; available at http://www.doc.ic.ac.uk/~kuag/k3undec.ps, 2000.
[22]Hodkinson, I., Loosely guarded fragment has the finite model property, Manuscript; available at http://www.doc.ic.ac.uk/~imh, 2000.
[23]Hodkinson, I., Wolter, F., and Zakharyaschev, M., Decidable fragments of first-order temporal logics, Annals of Pure and Applied Logic, (2000), In print.
[24]Hughes, G.E. and Cresswell, M.J., A new introduction to modal logic, Methuen, London, 1996.
[25]Kripke, S., The undecidability of monadic modal quantificational theory, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 8 (1962), pp. 113116.
[26]Laux, A., Beliefs in multi-agent worlds: a terminological approach, Proceedings of the 11th european conference on artificial intelligence (Amsterdam), 1994, pp. 299303.
[27]Löwenheim, L., Über Möglichkeiten im Relativkalkül, Mathematische Annalen, vol. 76 (1915), pp. 447470.
[28]Lutz, C., Sturm, H., Wolter, F., and Zakharyaschev, M., A tableau for K based on ALE with constant domains, Manuscript; available at http://www.informatik.uni-leipzig.de/~wolter, 2000.
[29]Marx, M., Packed fragment and relativized semantics, Manuscript, ILLC, University of Amsterdam, 1998.
[30]Marx, M., Complexity of products of modal logics, Journal of Logic and Computation, vol. 9 (1999), pp. 197214.
[31]Mortimer, M., On languages with two variables, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 21 (1975), pp. 135140.
[32]Purdy, W.C., Fluted formulas and the limits of decidability, this Journal, vol. 61 (1996), pp. 608620.
[33]Schild, K., A correspondence theory for terminological logics: preliminary report, Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91) (Sydney), 1991, pp. 466471.
[34]Schild, K., Combining terminological logics with tense logic, Proceedings of the 6th Portuguese conference on artificial intelligence (Porto), 1993, pp. 105120.
[35]Schmidt-Schauß, M. and Smolka, G., Attributive concept descriptions with complements, Artificial Intelligence, vol. 48 (1991), pp. 126.
[36]Scott, D., A decision method for validity of sentences in two variables, this Journal, vol. 27 (1962), p. 477.
[37]Segerberg, K., Two-dimensional modal logic, Journal of Philosophical Logic, vol. 2 (1973), pp. 7796.
[38]Shehtman, V., On some two-dimensional modal logics, Proceedings of the 8th International Congress on Logic, Methodology, and Philosophy of Science (Moscow), vol. 1, 1987, pp. 326330.
[39]Spaan, E., Complexity of modal logics, Ph.D. thesis, Department of Mathematics and Computer Science, University of Amsterdam, 1993.
[40]Sturm, H. and Wolter, F., A tableau calculus for temporal description logic: expanding domain case, Journal of Logic and Computation, to appear.
[41]Sturm, H., Wolter, F., and Zakharyaschev, M., Monodie epistemic predicate logic, Proceedings of JELIA, Lecture Notes in Artificial Intelligence, Springer, 2000.
[42]Surányi, J., Zur Reduktion des Entscheidungsproblems des logischen Funktionskalküls, Mathematikai és Fizikai Lepok, vol. 50 (1943), pp. 5174.
[43]van Benthem, J., Exploring logical dynamics, CSLI Publications, Stanford, 1996.
[44]van Benthem, J., Dynamic bits and pieces, Technical Report LP–97–01, ILLC, University of Amsterdam, 1997.
[45]Wajsberg, M., Ein erweiter Klassenkalkül, Monatshefte für Mathematik und Physik, vol. 40 (1933), pp. 113126.
[46]Wolter, F. and Zakharyaschev, M., Satisfiability problem in description logics with modal operators, Proceedings of the sixth Conference on Principles of Knowledge Representation and Reasoning (Montreal, Canada), Morgan Kaufman, 1998, pp. 512523.
[47]Wolter, F. and Zakharyaschev, M., Modal description logics: modalizing roles, Fundamenta Informaticae, vol. 39 (1999), pp. 411438.
[48]Wolter, F. and Zakharyaschev, M., Axiomatizing the monodic fragment offirst-order temporal logic, Manuscript; available at http://www.informatik.uni-leipzig.de/~wolter, 2000.
[49]Wolter, F. and Zakharyaschev, M., Dynamic description logic, Advances in modal logic, volume 2 (Zakharyaschev, M., Segerberg, K., de Rijke, M., and Wansing, H., editors), CSLI Publications, 2000.
[50]Wolter, F. and Zakharyaschev, M., Temporalizing description logics, Frontiers of combining systems 2 (Baldock, England) (Gabbay, D. and de Rijke, M., editors), Research Studies Press Ltd, 2000, pp. 379401.
[51]Zamov, N., Maslov's inverse method and decidable classes, Annals of Pure and Applied Logic, vol. 42 (1989), pp. 165194.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed