[1]
Asperó, David and Friedman, Sy-David, Large cardinals and locally defined well-orders of the universe, Annals of Pure and Applied Logic, vol. 157 (2009), no. 1, pp. 1–15.
[3]
Bagaria, Joan and Friedman, Sy D., Generic absoluteness, Proceedings of the XIth Latin American Symposium on Mathematical Logic (Mérida, 1998), vol. 108, 2001, pp. 3–13.
[4]
Cummings, James, Iterated forcing and elementary embeddings, The handbook of set theory (Foreman, M., Kanamorie, A., and Magidor, M., editors), vol. 2, Springer, Berlin, 2010, pp. 775–884.
[5]
Feng, Qi, Magidor, Menachem, and Woodin, Hugh, Universally Baire sets of reals, Set theory of the continuum (Berkeley, CA, 1989), Mathematical Sciences Research Institute Publications, vol. 26, Springer, New York, 1992, pp. 203–242.
[6]
Friedman, Sy-David, Forcing, combinatorics and definability, Proceedings of the 2009 RIMS Workshop on Combinatorical Set Theory and Forcing Theory in Kyoto, Japan, RIMS Kokyuroku No. 1686, 2010, pp. 24–40.
[7]
Friedman, Sy-David and Holy, Peter, Condensation and large cardinals, Fundamenta Mathematical vol. 215 (2011), no. 2, pp. 133–166.
[9]
Fuchs, Gunter, Closed maximality principles: implications, separations and combinations, this Journal, vol. 73 (2008), no. 1, pp. 276–308.
[10]
Harrington, Leo, Long projective wellorderings, Annals of Pure andApplied Logic, vol. 12 (1977), no. 1, pp. 1–24.
[11]
Hyttinen, Tapani and Rautila, Mika, The canary tree revisited, this Journal, vol. 66 (2001), no. 4, pp. 1677–1694.
[12]
Hyttinen, Tapani and Väänänen, Jouko, On Scott and Karp trees of uncountable models, this Journal, vol. 55 (1990), no. 3, pp. 897–908.
[13]
Jech, Thomas J., Trees, this Journal, vol. 36 (1971), pp. 1–14.
[14]
Jensen, R. B. and Solovay, R. M., Some applications of almost disjoint sets, Mathematical Logic and Foundations of Set Theory, North-Holland, Amsterdam, 1970, pp. 84–104.
[15]
Kanamori, Akihiro, The higher infinite, second ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
[16]
Laver, Richard, Certain very large cardinals are not created in small forcing extensions, Annals of Pure and Applied Logic, vol. 149 (2007), no. 1–3, pp. 1–6.
[17]
Mekler, Alan and Väänänen, Jouko, Trees and
-subsets of ^{ω1
}ω_{1}
, this Journal, vol. 58 (1993), no. 3, pp. 1052–1070.
[18]
Nadel, Mark and Stavi, Jonathan, L_{∞λ},-equivalence, isomorphism and potential isomorphism, Transactions of the American Mathematical Society, vol. 236 (1978), pp. 51–74.
[19]
Neeman, Itay and Zapletal, Jindřich, Proper forcings and absoluteness in L(R), Commentationes Mathematicae Universitatis Carolinae, vol. 39 (1998), no. 2, pp. 281–301.
[20]
Shelah, Saharon and Väisänen, Pauli, The number of L_{∞k}-equivalent nonisomorphic models for k weakly compact, Fundamenta Mathematicae, vol. 174 (2002), no. 2, pp. 97–126.
[21]
Todorčević, Stevo and Väänänen, Jouko, Trees and Ehrenfeucht-Fraïssé games, Annals of Pure and Applied Logic, vol. 100 (1999), no. 1–3, pp. 69–97.
[22]
Väänänen, Jouko, A Cantor-Bendixson theorem for the space
, Polska Akademia Nauk. Fundamenta Mathematical vol. 137 (1991), no. 3, pp. 187–199.
[23]
Väänänen, Jouko, Games and trees in infinitary logic: A survey, Quantifiers (Krynicki, M., Mostowski, M., and Szczerba, L., editors), Kluwer Academic Publishers, 1995, pp. 105–138.