[1]
Auslander, J., Minimal Flows and their Extensions, Mathematics Studies, vol. 153, North-Holland, The Netherlands, 1988.

[2]
Chernikov, A. and Simon, P., *Definably amenable NIP groups*, submitted.

[3]
Conversano, A. and Pillay, A.,
*Connected components of definable groups and o-minimality*
I. Advances in Mathematics, vol. 231 (2012), pp. 605–623.

[4]
Ellis, R., Lectures on Topological Dynamics, Benjamin, W. A., New York, 1969.

[5]
Engelking, R., General Topology, Sigma Series in Pure Mathematics, Heldermann Verlag, Berlin, 1989.

[6]
Gismatullin, J.,
*Model theoretic connected components of groups*
. Israel Journal of Mathematics, vol. 184 (2011), pp. 251–274.

[7]
Gismatullin, J. and Krupiński, K.,
*On model-theoretic connected components in some group extensions*
. Journal of Mathematical Logic, vol. 15 (2015), 1550009 (51 pages).

[8]
Gismatullin, J., Penazzi, D., and Pillay, A.,
*On compactifications and the topological dynamics of definable groups*
. Annals of Pure and Applied Logic, vol. 165 (2014), pp. 552–562.

[9]
Glasner, S., Proximal Flows, Lecture Notes in Mathematics, vol. 517, Springer, Germany, 1976.

[10]
Jagiella, G.,
*Definable topological dynamics and real Lie groups*
. Mathematical Logic Quarterly, vol. 61 (2015), pp. 45–55.

[11]
Krupiński, K.,
*Generalizations of small profinite structures*
, this JOURNAL, vol. 75 (2010), pp. 1147–1175.

[12]
Krupiński, K.,
*Some model theory of Polish structures*
. Transactions of the American Mathematical Society, vol. 362 (2010), pp. 3499–3533.

[13]
Krupiński, K. and Newelski, L.,
*On bounded type definable equivalence relations*
. Notre Dame Journal of Formal Logic, vol. 43 (2002), pp. 231–242.

[14]
Krupiński, K. and Pillay, A.,
*Generalized Bohr compactification and model-theoretic connected components*
. Mathematical Proceedings of the Cambridge Philosophical Society, to appear. Published on-line, doi: https://doi.org/10.1017/S0305004116000967.
[15]
Krupiński, K., Pillay, A., and Rzepecki, T., *Topological dynamics and the complexity of strong types*, submitted.

[16]
Krupiński, K. and Wagner, F., *Small, nm-stable compact G-groups*. Israel Journal of Mathematics, vol. 194 (2013), pp. 907–933.

[17]
Lascar, D. and Pillay, A., *Hyperimaginaries and automorphism groups*, this JOURNAL, vol. 66 (2001), pp. 127–143.

[18]
Newelski, L.,
*-gap conjecture and m-normal theories*. Israel Journal of Mathematics, vol. 106 (1998), pp. 285–311.

[19]
Newelski, L.,
*Small profinite structures*
. Transactions of the American Mathematical Society, vol. 354 (2001), pp. 925–943.

[20]
Newelski, L., *Topological dynamics of definable groups actions*, this JOURNAL, vol. 74 (2009), pp. 50–72.

[21]
Newelski, L.,
*Model theoretic aspects of the Ellis semigroup*
. Israel Journal of Mathematics, vol. 190 (2012), pp. 477–507.

[22]
Pillay, A., Geometric Stability Theory, Clarendon Press, Oxford, 1996.

[23]
Pillay, A.,
*Type-definability, compact Lie groups, and o-minimality*
. Journal of Mathematical Logic, vol. 4 (2004), pp. 147–162.

[24]
Ribes, L. and Zalesskii, P., Profinite Groups, vol. 40, Springer, Heidelberg, 2000.

[25]
Shelah, S.,
*Minimal bounded index subgroup for dependent theories*
. Proceedings of the American Mathematical Society, vol. 136 (2008), pp. 1087–1091.

[26]
Shelah, S., *Dependent dreams: Recounting types*, preprint Sh:950.

[27]
Simon, P., A Guide to NIP Theories, Lecture Notes in Logic, Cambridge University Press, Cambridge, 2015.

[28]
Wagner, F.,
*Small m-stable profinite groups*
. Fundamenta Mathematicae, vol. 176 (2003), pp. 181–191.

[29]
Yao, N. and Long, D., Topological dynamics for groups definable in real closed field. Annals of Pure and Applied Logic, vol. 166 (2015), pp. 261–273.