[1]Anderson, B. A. and Csima, B. F., Degrees that are not degrees of categoricity. Notre Dame Journal of Formal Logic, vol. 57 (2016), no. 3, pp. 289–398.

[2]Ash, C. J., Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees. Transactions of the American Mathematical Society, vol. 298 (1986), pp. 497–514.

[3]Ash, C. J., Stability of recursive structures in arithmetical degrees. Annals of Pure and Applied Logic, vol. 32 (1986), pp. 113–135.

[4]Ash, C. J. and Knight, J. F., Computable Structures and the Hyperarithmetical Hierarchy, Studies in Logic and the Foundations of Mathematics, vol. 144, Elsevier Science B.V., Amsterdam, 2000.

[5]Bazhenov, N. A., Degrees of categoricity for superatomic Boolean algebras. Algebra Logic, vol. 52 (2013), no. 3, pp. 179–187.

[6]Bazhenov, N. A., -categoricity of Boolean algebras. Journal of Mathematical Sciences, vol. 203 (2014), no. 4, pp. 444–454.

[7]Bazhenov, N. A., Autostability spectra for Boolean algebras. Algebra Logic, vol. 53 (2015), no. 6, pp. 502–505.

[8]Bazhenov, N. A., Kalimullin, I. S., and Yamaleev, M. M., Degrees of categoricity vs. strong degrees of categoricity. Algebra Logic, vol. 55 (2016), no. 2, pp. 173–177.

[9]Csima, B. F., Franklin, J. N. Y., and Shore, R. A., Degrees of categoricity and the hyperarithmetic hierarchy. Notre Dame Journal of Formal Logic, vol. 54 (2013), no. 2, pp. 215–231.

[11]Ershov, Y. L. and Goncharov, S. S., Constructive Models, Kluwer Academic/Plenum Publishers, New York, 2000.

[12]Fokina, E., Frolov, A., and Kalimullin, I., Categoricity spectra for rigid structures. Notre Dame Journal of Formal Logic, vol. 57 (2016), no. 1, 45–57.

[13]Fokina, E. B., Kalimullin, I., and Miller, R., Degrees of categoricity of computable structures. Archive for Mathematical Logic, vol. 49 (2010), no. 1, pp. 51–67.

[14]Frolov, A. N., Effective categoricity of computable linear orderings. Algebra Logic, vol. 54 (2015), no. 5, pp. 415–417.

[15]Fröhlich, A. and Shepherdson, J. C., Effective procedures in field theory. Philosophical transactions of the Royal Society of London, Series A, vol. 248 (1956), 950, pp. 407–432.

[16]Goncharov, S. S., Degrees of autostability relative to strong constructivizations. Proceedings of the Steklov Institute of Mathematics, vol. 274 (2011), pp. 105–115.

[17]Hirschfeldt, D. R., Khoussainov, B., Shore, R. A., and Slinko, A. M., Degree spectra and computable dimensions in algebraic structures. Annals of Pure and Applied Logic, vol. 115 (2002), no. 1–3, pp. 71–113.

[18]Mal’tsev, A. I., Constructive algebras. I. Russian Mathematical Surveys, vol. 16 (1961), no. 3, pp. 77–129.

[19]Mal’tsev, A. I., On recursive abelian groups. Soviet Mathematics - Doklady, vol. 32 (1962), pp. 1431–1434.

[20]Miller, R., **d**-computable categoricity for algebraic fields, this Journal, vol. 74 (2009), no. 4, pp. 1325–1351.

[21]Miller, R. and Shlapentokh, A., Computable categoricity for algebraic fields with splitting algorithms. Transactions of the American Mathematical Society, vol. 367 (2015), no. 6, pp. 3955–3980.