Skip to main content
×
×
Home

Degrees of unsolvability of continuous functions

  • Joseph S. Miller (a1)
Abstract.

We show that the Turing degrees are not sufficient to measure the complexity of continuous functions on [0, 1]. Computability of continuous real functions is a standard notion from computable analysis. However, no satisfactory theory of degrees of continuous functions exists. We introduce the continuous degrees and prove that they are a proper extension of the Turing degrees and a proper substructure of the enumeration degrees. Call continuous degrees which are not Turing degrees non-total. Several fundamental results are proved: a continuous function with non-total degree has no least degree representation, settling a question asked by Pour-El and Lempp; every non-computable f[0,1] computes a non-computable subset of ℕ there is a non-total degree between Turing degrees a <Tb iff b is a PA degree relative to a; ⊆ 2 is a Scott set iff it is the collection of f-computable subsets of ℕ for some f[0,1] of non-total degree; and there are computably incomparable f, g[0,1] which compute exactly the same subsets of ℕ. Proofs draw from classical analysis and constructive analysis as well as from computability theory.

Copyright
References
Hide All
[1]Arslanov, M. M., Nadyrov, R. F., and Solov'ev, V. D., A criterion for the completeness of recursively enumerable sets, and some generalizations of a fixed point theorem, Izestija Vysših Učebnyh Zavedeniǐ Matematika, (1977), no. 4 (179), pp. 37.
[2]Beeson, Michael J., Foundations of constructive mathematics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 6, Springer-Verlag, Berlin, 1985.
[3]Birkhoff, G. D. and Kellogg, O. D., Invariant points in function space, Transactions of the American Mathematical Society, vol. 23 (1922), no. 1, pp. 96115.
[4]Bohnenblust, H. F. and Karlin, S., On a theorem of Ville, Contributions to the theory of games, Annals of Mathematics Studies, no. 24, Princeton University Press, Princeton, N.J., 1950, pp. 155160.
[5]Cenzer, D. and Remmel, J. B., classes in mathematics, Handbook of recursive mathematics, vol. 2, Studies in Logic and the Foundations of Mathematics, vol. 139, North-Holland, Amsterdam, 1998, pp. 623821.
[6]Cenzer, Douglas, classes in computability theory, Handbook of computability theory, Studies in Logic and the Foundations of Mathematics, vol. 140, North-Holland, Amsterdam, 1999, pp. 3785.
[7]Cooper, S. B., Partial degrees and the density problem, this Journal, vol. 47 (1982), no. 4, pp. 854859 (1983).
[8]Eilenberg, Samuel and Montgomery, Deane, Fixed point theorems for multi-valued transformations, American Journal of Mathematics, vol. 68 (1946), pp. 214222.
[9]Grzegorczyk, Andrzej, Computable functionals, Fundamenta Mathematicae, vol. 42 (1955), pp. 168202.
[10]Grzegorczyk, Andrzej, On the definitions of computable real continuous functions, Fundamenta Mathematicae, vol. 44 (1957), pp. 6171.
[11]Gutteridge, Lance, Some results on enumeration reducibility, Ph.D. thesis, Simon Fraser University, 1971.
[12]Jockusch, Carl G. Jr., and Soare, Robert I., classes and degrees of theories, Transactions of the American Mathematical Society, vol. 173 (1972), pp. 3356.
[13]Kakutani, Shizuo, A generalization of Brouwer's fixed point theorem, Duke Mathematical Journal, vol. 8 (1941), pp. 457459.
[14]Kleene, Stephen Cole, Introduction to Metamathematics, D. Van Nostrand Company, Incorporation, New York, N.Y., 1952.
[15]Kreitz, Christoph and Weihrauch, Klaus, Theory of representations, Theoretical Computer Science, vol. 38 (1985), no. 1, pp. 3553.
[16]Lacombe, Daniel, Extension de la notion de fonction récursive aux fonctions d'une ou plusieurs variables réelles. I, Comptes Rendus Mathématique. Académie des Sciences. Paris, vol. 240 (1955). pp. 24782480.
[17]Lacombe, Daniel, Extension de la notion de fonction récursive aux fonctions d'une ou plusieurs variables réelles. II, III, Comptes Rendus Mathématique. Académie des Sciences. Paris, vol. 241 (1955), pp. 13–14, 151153.
[18]Lacombe, Daniel, Quelques procédés de définition en topologie recursive, Constructivity in mathematics:Proceedings of the Colloquium held at Amsterdam, 1957 (Heyting, A., editor), Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, 1959, pp. 129158.
[19]Lerman, Manuel, Degrees of Unsolvability, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1983.
[20]Medvedev, Yu. T., Degrees of difficulty of the mass problem, Doklady Akademii Nauk SSSR, vol. 104 (1955), pp. 501504.
[21]Mučnik, A. A., On strongand weak reducibility of algorithmic problems, Akademija Nauk SSSR. Sibirskoe Otdelenie. Sibirskiĭ Matematičeskiĭ Žurnal, vol. 4 (1963), pp. 13281341.
[22]Myhill, John, Note on degrees of partial functions, Proceedings of the American Mathematical Society, vol. 12 (1961), pp. 519521.
[23]Nerode, Anil and Shore, Richard A., Second order logic and first order theories of reducibility orderings, The Kleene Symposium (Proceedings of the Symposium, University of Wisconsin, Madison, Wisconsin, 1978), Studies in Logic and the Foundations of Mathematics, vol. 101, North-Holland, Amsterdam, 1980, pp. 181200.
[24]Orevkov, V. P., A constructive map of the square into itself, which moves every constructive point, Doklady Akademii Nauk SSSR, vol. 152 (1963), pp. 5558.
[25]Posner, David B., The upper semilattice of degrees ≤ 0′ is complemented, this Journal, vol. 46 (1981), no. 4, pp. 705713.
[26]Pour-El, Marian B. and Caldwell, Jerome, On a simple definition of computable function of a real variable—with applications to functions of a complex variable, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 21 (1975), pp. 119.
[27]Pour-El, Marian B. and Richards, J. IAN, Computability and noncomputability in classical analysis, Transactions of the American Mathematical Society, vol. 275 (1983), no. 2, pp. 539560.
[28]Pour-El, Marian B. and Richards, J. IAN, Computability in Analysis and Physics, Springer-Verlag, Berlin, 1989.
[29]Richter, Linda Jean, Degrees of structures, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1979.
[30]Rogers, Hartley Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill Book Company, New York, 1967.
[31]Rozinas, M., The semilattice of e-degrees, Recursive functions (Russian), Ivanov. Gos. Univ., Ivanovo, 1978, pp. 7184.
[32]Sacks, Gerald E., The recursively enumerable degrees are dense, Annals of Mathematics, Second Series, vol. 80 (1964), pp. 300312.
[33]Schauder, J., Der Fixpunktsatz in Funktionalräumen, Studia Mathematica, vol. 2 (1930), pp. 171180.
[34]Scott, Dana, Algebras of sets binumerable in complete extensions of arithmetic, Proceedings of Symposia in Pure Mathematics, Vol. V, American Mathematical Society, Providence, R.I., 1962, pp. 117121.
[35]Selman, Alan L., Arithmetical reducibilities. I, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 17 (1971), pp. 335350.
[36]Simpson, Stephen G., Degrees of unsolvability: A survey of results, Handbook of Mathematical Logic (Barwise, J., editor), North-Holland, Amsterdam, 1977, pp. 631652.
[37]Simpson, Stephen G., First-order theory of the degrees of recursive unsolvability, Annals of Mathematics. Second Series, vol. 105 (1977), no. 1, pp. 121139.
[38]Slaman, Theodore A. and Woodin, W. Hugh, Definability in the enumeration degrees, Archive for Mathematical Logic, vol. 36 (1997). no. 4-5, pp. 255267, Sacks Symposium (Cambridge, MA, 1993).
[39]Spector, Clifford, On degrees of recursive unsolvability, Annals of Mathematics. Second Series, vol. 64 (1956), pp. 581592.
[40]Turing, A. M., On computable numbers, with an application to the Entscheidungsproblem, Proceedings of the London Mathematical Society. Second Series, vol. 42 (1936), pp. 230265, Correction in [41].
[41]Turing, A. M., On computable numbers, with an application to the Entscheidungsproblem. A correction, Proceedings of the London Mathematical Society. Second Series, vol. 43 (1937), pp. 544546, Correction to [40].
[42]Weihrauch, Klaus, Computability on computable metric spaces, Theoretical Computer Science, vol. 113 (1993), no. 2, pp. 191210.
[43]Weihrauch, Klaus, Computable Analysis, An Introduction, Springer-Verlag, Berlin, 2000.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed