Skip to main content
×
Home
    • Aa
    • Aa

Classifying model-theoretic properties

  • Chris J. Conidis (a1)
Abstract
Abstract

In 2004 Csima, Hirschfeldt, Knight, and Soare [1] showed that a set AT 0′ is nonlow2 if and only if A is prime bounding, i.e., for every complete atomic decidable theory T, there is a prime model computable in A. The authors presented nine seemingly unrelated predicates of a set A, and showed that they are equivalent for sets. Some of these predicates, such as prime bounding, and others involving equivalence structures and abelian p-groups come from model theory, while others involving meeting dense sets in trees and escaping a given function come from pure computability theory.

As predicates of A, the original nine properties are equivalent for sets; however, they are not equivalent in general. This article examines the (degree-theoretic) relationship between the nine properties. We show that the nine properties fall into three classes, each of which consists of several equivalent properties. We also investigate the relationship between the three classes, by determining whether or not any of the predicates in one class implies a predicate in another class.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[4]N. G. Khisamiev , Theory of Abelian groups with constructive models, Siberian Mathematical Journal, vol. 27 (1986), pp. 572585.

[7]M. Lerman , Degrees of unsolvability, Springer-Verlag, Berlin, 1983.

[10]R. I. Soare , Recursively enumerable sets and degrees: A study of computable functions and computably generated sets, Springer-Verlag, Heidelberg, 1987.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×