Skip to main content
×
×
Home

MATHIAS FORCING AND COMBINATORIAL COVERING PROPERTIES OF FILTERS

  • DAVID CHODOUNSKÝ (a1), DUŠAN REPOVŠ (a2) and LYUBOMYR ZDOMSKYY (a3)
Abstract

We give topological characterizations of filters ${\cal F}$ on ω such that the Mathias forcing ${M_{\cal F}}$ adds no dominating reals or preserves ground model unbounded families. This allows us to answer some questions of Brendle, Guzmán, Hrušák, Martínez, Minami, and Tsaban.

Copyright
References
Hide All
[1]Arkhangel’skiĭ, A., Hurewicz spaces, analytic sets and fan tightness of function spaces. Doklady Akademii Nauk SSSR, vol. 287 (1986), pp. 525528. (In Russian)
[2]Aubrey, J., Combinatorics for the dominating and unsplitting numbers, this Journal vol. 69 (2004), no. 2, pp. 482498.
[3]Bartoszyński, T. and Judah, H., Set Theory: On the structure of the real line, Peters, A. K., Massachusetts, 1995.
[4]Bartoszyński, T. and Tsaban, B., Hereditary topological diagonalizations and the Menger-Hurewicz conjectures. Proceedings of the American Mathematical Society, vol. 134 (2006), pp. 605615.
[5]Blass, A., Near Coherence of filters, I. Cofinal equivalence of models of arithmetic. Notre Dame Journal of Formal Logic, vol. 27 (1986), pp. 579591.
[6]Brendle, J., Mob families and mad families. Archive for Mathematical Logic, vol. 210 (2010), pp. 146.
[7]Canjar, R., Mathias forcing which does not add dominating reals. Proceedings of the American Mathematical Society, vol. 104 (1988), pp. 12391248.
[8]Canjar, R., Cofinalities of countable ultraproducts: the existence theorem. Notre Dame Journal of Formal Logic, vol. 30 (1989), pp. 539542.
[9]Galvin, F. and Miller, A. W., γ-sets and other singular sets of real numbers. Topology and its Applications, vol. 17 (1984), pp. 145155.
[10]Gerlits, J., Nagy, Zs., Some properties of C(X), I. Topology and its Applications, vol. 14 (1982), pp. 151161.
[11]Guzmán, O., Hrušák, M. and Martínez, A. A., Canjar filters. Notre Dame Journal of Formal Logic, to appear.
[12]Hrušák, M. and Minami, H., Laver-Prikry and Mathias-Prikry type forcings, Annals of Pure and Applied Logic vol. 165 (2014), pp. 880894.
[13]Hurewicz, W., Über eine Verallgemeinerung des Borelschen Theorems. Mathematische Zeitschrift, vol. 24 (1925), pp. 401421.
[14]Jech, T., Set theory, The third millennium edition, revised and expanded, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
[15]Just, W., Miller, A. W., Scheepers, M. and Szeptycki, P.J., The combinatorics of open covers II. Topology and its Applications, vol. 73 (1996), pp. 241266.
[16]Laflamme, C., Forcing with filters and complete combinatorics. Annals of Pure and Applied Logic, vol. 42 (1989), pp. 125163.
[17]Laflamme, C. and Leary, C.C., Filter games on ω and the dual ideal. Fundamenta Mathematicae, vol. 173 (2002), pp. 159173.
[18]Orenshtein, T. and Tsaban, B., Linear σ-additivity and some applications. Transactions of the American Mathematical Society, vol. 363 (2011), pp. 36213637.
[19]Repovš, D., Tsaban, B. and Zdomskyy, L., Hurewicz sets of reals without perfect subsets., Proceedings of the American Mathematical Society, vol. 136 (2008), pp. 25152520.
[20]Scheepers, M., Combinatorics of open covers. I. Ramsey theory. Topology and its Applications, vol. 69 (1996), pp. 3162.
[21]Scheepers, M. and Tall, F. D., Lindelöf indestructibility, topological games and selection principles. Fundamenta Mathematicae, vol. 210 (2010), pp. 146.
[22]Shelah, S., On cardinal invariants of the continuum, Axiomatic set theory (Boulder, Colo., 1983), Contemporary Mathematics, vol. 31, American Mathematical Society, 1984, pp. 183207.
[23]Tsaban, B., A diagonalization property between Hurewicz and Menger. Real Analysis Exchange, vol. 27 (2001/2002), pp. 757763.
[24]Tsaban, B. and Zdomskyy, L., Scales, fields, and a problem of Hurewicz. Journal of the European Mathematical Society, vol. 10 (2008), no. 3, pp. 837866.
[25]Vaughan, J., Small uncountable cardinals and topology, Open problems in topology (van Mill, J. and Reed, G.M., editors), Elsevier Science Publisher, Amsterdam, 1990, pp. 195218.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed