[1]
Apter, A. W., Gitman, V., and Hamkins, J. D.,
*Inner models with large cardinal features usually obtained by forcing*
. Archive for Mathematical Logic, vol. 51 (2012), no. 3–4, pp. 257–283.

[2]
Bagaria, J. and Friedman, S. D.,
*Generic absoluteness*
. Proceedings of the XIth Latin American Symposium on Mathematical Logic (Mérida, 1998), vol. 108 (2001), pp. 3–13.

[3]
Burgess, J. P.,
*Descriptive set theory and infinitary languages*
, Set Theory, Foundations of Mathematics (Proceeding of Symposia, Belgrade, 1977), Matematički institut SANU (Nova Serija), *Zbornik Radova*, vol.2(10), 1977, pp. 9–30.

[4]
Burgess, J. P.,
*Effective enumeration of classes in a*
${\rm{\Sigma }}_1^1$
*equivalence relation*
. Indiana University Mathematics Journal, vol. 28 (1979), no. 3, pp. 353–364.
[5]
Caicedo, A. E. and Schindler, R.,
*Projective well-orderings of the reals*
. Archive for Mathematical Logic, vol. 45 (2006), no. 7, pp. 783–793.

[6]
Chan, W., The countable admissible ordinal equivalence relation. Annals of Pure and Applied Logic, vol. 168 (2016), pp. 1224–1246.

[7]
Chan, W., *Canonicalization by absoluteness*, Notes.

[8]
Chan, W. and Magidor, M., *When an equivalence relation with all Borel classes will be Borel somewhere*? 2016, arXiv e-prints.

[10]
Devlin, K. J.,
*An introduction to the fine structure of the constructible hierarchy (results of Ronald Jensen (Ann. Math. Logic 4 (1972), 229–308; erratum, ibid. 4(1972), 443))*
, Generalized Recursion Theory (Proceedings of Symposia, University of Oslo, Oslo, 1972), Studies in Logic and the Foundations of Mathematics, vol. 79, North-Holland, Amsterdam, 1974, pp. 123–163.

[11]
Drucker, O., *Borel canonization of analytic sets with Borel sections*, 2015, arXiv e-prints.

[12]
Feng, Q., Magidor, M., and Woodin, H.,
*Universally Baire sets of reals*
, Set Theory of the Continuum (Berkeley, CA, 1989), Mathematical Sciences Research Institute Publications, vol. 26, Springer, New York, 1992, pp. 203–242.

[13]
Friedman, S. D.,
*Minimal coding*
. Annals of Pure and Applied Logic, vol. 41 (1989), no. 3, pp. 233–297.

[14]
Hamkins, J. D. and Hugh Woodin, W.,
*The necessary maximality principle for c.c.c. forcing is equiconsistent with a weakly compact cardinal*
. Mathematical Logic Quarterly, vol. 51 (2005), no. 5, pp. 493–498.

[15]
Hjorth, G., *Thin equivalence relations and effective decompositions*, this Journal, vol. 58 (1993), no. 4, pp. 1153–1164.

[16]
Jech, T., Set Theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.

[17]
Jensen, R. B.,
*The fine structure of the constructible hierarchy*
. Annals of Mathematical Logic, vol. 4 (1972), pp. 229–308; erratum, ibid. 4(1972), 443.

[18]
Jensen, R.,
*Definable sets of minimal degree*
. Studies in Logic and the Foundations of Mathematics, vol. 59 (1970), pp. 122–128.

[19]
Kanovei, V., Sabok, M., and Zapletal, J., Canonical Ramsey Theory on Polish Spaces, Cambridge Tracts in Mathematics, vol. 202, Cambridge University Press, Cambridge, 2013.

[20]
Kechris, A. S.,
*Measure and category in effective descriptive set theory*
. Annals of Mathematical Logic, vol. 5 (1972/73), pp. 337–384.

[21]
Kechris, A. S., Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995.

[22]
Kechris, A. S. and Louveau, A.,
*The classification of hypersmooth Borel equivalence relations*
. Journal of the American Mathematical Society, vol. 10 (1997), no. 1, pp. 215–242.

[23]
Kunen, K., Set Theory, Studies in Logic (London), vol. 34, College Publications, London, 2011.

[24]
Mansfield, R. and Weitkamp, G., Recursive Aspects of Descriptive Set Theory, Oxford Logic Guides, vol. 11, The Clarendon Press, Oxford University Press, New York, 1985.

[25]
Martin, D. A. and Solovay, R. M.,
*A basis theorem for*
${\rm{\Sigma }}_3^1$
*sets of reals*
. Annals of Mathematics (2), vol. 89 (1969), pp. 138–159.
[26]
Martin, D. A. and Solovay, R. M.,
*Internal Cohen extensions*
. Annals of Mathematical Logic, vol. 2 (1970), no. 2, pp. 143–178.

[28]
Schindler, R., Set Theory, Universitext, Springer, Cham, 2014.

[29]
Schindler, R. and Zeman, M.,
*Fine structure*
, Handbook of Set Theory (Foreman, M. and Kanamori, A., editors), Springer, Dordrecht, 2010, pp. 605–656.

[30]
Schindler, R.-D., *Proper forcing and remarkable cardinals. II*, this Journal, vol. 66 (2001), no. 3, pp. 1481–1492.

[31]
Shelah, S.,
*Can you take Solovay’s inaccessible away*?
Israel Journal of Mathematics, vol. 48 (1984), no. 1, pp. 1–47.

[32]
Solovay, R. M.,
*A model of set-theory in which every set of reals is Lebesgue measurable*
. Annals of Mathematics (2), vol. 92 (1970), pp. 1–56.

[33]
Zapletal, J.,
*Descriptive set theory and definable forcing*
. Memoirs of the American Mathematical Society, vol. 167 (2004), no. 793.

[34]
Zapletal, J., Forcing Idealized, Cambridge Tracts in Mathematics, vol. 174, Cambridge University Press, Cambridge, 2008.