No CrossRef data available.
Published online by Cambridge University Press: 12 March 2014
We construct a weak second-order theory of arithmetic which includes Weak König's Lemma (WKL) for trees defined by bounded formulae. The provably total functions (with -graphs) of this theory are the polynomial time computable functions. It is shown that the first-order strength of this version of WKL is exactly that of the scheme of collection for bounded formulae.