Skip to main content Accessibility help
×
Home

From index sets to randomness in ∅n: random reals and possibly infinite computations part II

  • Verónica Becher (a1) and Serge Grigorieff (a2)

Abstract

We obtain a large class of significant examples of n-random reals (i.e., Martin-Löf random in oracle ∅(n−1)) à la Chaitin. Any such real is defined as the probability that a universal monotone Turing machine performing possibly infinite computations on infinite (resp. finite large enough, resp. finite self-delimited) inputs produces an output in a given set . In particular, we develop methods to transfer many-one completeness results of index sets to n-randomness of associated probabilities.

Copyright

References

Hide All
[1]Becher, V. and Chaitin, G., Another example of higher order randomness, Fundamenta Informaticae, vol. 51 (2002), no. 4, pp. 325338.
[2]Becher, V., Chaitin, G., and Daicz, S., A highly random number, Proceedings of the Third Discrete Mathematics and Theoretical Computer Science Conference (DMTCS'01) (Calude, C.S., Dineen, M.J., and Sburlan, S., editors), Springer-Verlag, 2001, pp. 5568.
[3]Becher, V., Figueira, S., Grigorieff, S., and Miller, J.S., Randomness and halting probabilities, this Journal, vol. 71 (2006), no. 4, pp. 14111430.
[4]Becher, V. and Grigorieff, S., Recursion and topology on 2≤ω for possibly infinite computations, Theoretical Computer Science, vol. 322 (2004), pp. 85136.
[5]Becher, V. and Grigorieff, S., Random reals and possibly infinite computations. Part I: Randomness in ∅′, this Journal, vol. 70 (2005), no. 3, pp. 891913.
[6]Becher, V. and Grigorieff, S., Random reals à la Chaitin with no prefix-freeness, Theoretical Computer Science, vol. 385 (2007), pp. 193201.
[7]Becher, V. and Grigorieff, S., Randomness and Outputs in a computable ordered set (Random reals and possibly infinite computations: Part III), (2008), in preparation.
[8]Calude, C.S., Hertling, P.H., and Khoussainov, B.Wang, Y., Recursively enumerable reals and Chaitin Ω numbers, Stacs 98 (Paris, 1998), Lecture Notes in Computer Science, vol. 1373, Springer-Verlag, 1998, pp. 596606.
[9]Chaitin, G., A theory of program size formally identical to information theory, Journal of the ACM, vol. 22 (1975), pp. 329340, Available on Chaitin's home page.
[10]Downey, R. and Hirschfeldt, D., Algorithmic randomness and complexity, Springer, 2008, to appear.
[11]Hjorth, G. and Nies, A., Randomness via effective descriptive set theory, The Journal of the London Mathematical Society, vol. 75 (2007), no. 2, pp. 495508.
[12]Kreisel, G., Shoenfield, J.R., and Wang, H., Number theoretic concepts and recursive well-orderings, Archivfur math. Logik und Grundlagenforschung, vol. 5 (1960), pp. 4264.
[13]Rogers, H., Theory of recursive functions and effective computability, McGraw-Hill, 1967.
[14]Sacks, G.E., Degrees of unsolvability, Annals of Mathematical Studies, Princeton University Press, 1966.
[15]Scott, D.S., Continuous lattices, Toposes, algebraic geometry and logic (Lawvered, F.W., editor), Lecture Notes in Math., vol. 2, Springer, 1972, pp. 97136.
[16]Selivanov, V.L., Hierarchies in φ-spaces and applications. Mathematical Logic Quaterly, vol. 51 (2005), no. 1, pp. 4561.
[17]Soare, R., Recursively enumerable sets and degrees, Perspectives in Mathematical Logic, Springer, 1986.
[18]Stillwell, J., Decidability of the almost all theory of degrees, this Journal, vol. 37 (1972), pp. 501506.
[19]Wadge, W.W., Degrees of complexity of subsets of the Baire space, Notices of the American Mathematical Society, (1972), pp. A714.

Related content

Powered by UNSILO

From index sets to randomness in ∅n: random reals and possibly infinite computations part II

  • Verónica Becher (a1) and Serge Grigorieff (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.