Skip to main content



The paper proves a conjecture of Solomon Feferman concerning the indefiniteness of the continuum hypothesis relative to a semi-intuitionistic set theory.

Hide All
[1] Aczel P. and Rathjen M., Notes on constructive set theory, Technical Report 40, Institut Mittag-Leffler, The Royal Swedish Academy of Sciences, 2001,, Preprint No. 40.
[2] Aczel P. and Rathjen M., Notes on constructive set theory, preprint, 2010, 243 pages,
[3] Barwise J., Admissible Sets and Structures, Springer, Berlin, 1975.
[4] Beeson M., Foundations of Constructive Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.
[5] Chen R.-M. and Rathjen M., Lifschitz Realizability for Intuitionistic Zermelo-Fraenkel Set Theory . Archive for Mathematical Logic, vol. 51 (2012), pp. 789818.
[6] Devlin K., Constructibility, Springer, Berlin, Heidelberg, New York, Tokyo, 1984.
[7] Diaconescu R., Axiom of choice and complementation . Proceedings of the American Mathematical Society, vol. 51 (1975), pp. 176178.
[8] Dummett M., Frege: Philosophy of Mathematics, Harvard University Press, London, 1991.
[9] Feferman S., On the strength of some semi-constructive theories , Logic, Construction, Computation (Berger U., Schuster P., and Seisenberger M., editors), pp. 201225, Ontos Verlag, Frankfurt, 2012.
[10] Feferman S., Is the continuum hypothesis a definite mathematical problem?, Draft of paper for the lecture to the Philosophy Dept., Harvard University, Oct. 5, 2011 in the Exploring the Frontiers of Incompleteness project series, Havard 2011–2012.
[11] Feferman S., Three Problems for Mathematics: Lecture 2: Is the Continuum Hypothesis a definite mathematical problem? Slides for inaugural Paul Bernays Lectures, ETH, Zürich, Sept. 12, 2012.
[12] Feferman S., Why isn’t the Continuum Problem on the Millennium ($1,000,000) Prize list? Slides for CSLI Workshop on Logic, Rationality and Intelligent Interaction, Stanford, June 1, 2013.
[13] Frege G., Die Grundlagen der Arithmetik, Verlag Wilhelm Koebner, Breslau, 1884.
[14] Friedman H., Some applications of Kleene’s method for intuitionistic systems , Cambridge Summer School in Mathematical Logic (Mathias A. and Rogers H., editors), Lectures Notes in Mathematics, vol. 337, Springer, Berlin, 1973, pp. 113170.
[15] Hajnal A., On a Consistency Theorem Connected with the Generalised Continuum Problem . Zeitschrift für Mathematische Logik, vol. 2 (1956), pp. 131136.
[16] Jech T., Set Theory, Springer, Berlin, 2003.
[17] Kunen K., Set Theory, North-Holland, Amsterdam, New York, Oxford, 1980.
[18] Lévy A., 1957 Indépendence Conditionnelle de V = L et d’Axiomes qui se Rattachent au Systeme de M. Gödel , Comptes Rendus de l’Académie des Sciences, Paris, vol. 245 (1957), pp. 15821583.
[19] McCarty D. C., Realizability and recursive set theory . Annals of Pure and Applied Logic, vol. 32 (1986), pp. 153183.
[20] Myhill J., Some properties of Intuitionistic Zermelo-Fraenkel set theory , Cambridge Summer School in Mathematical Logic (Mathias A. and Rogers H., editors), vol. 337, Lectures Notes in Mathematics, Springer, Berlin, 1973, pp. 206231.
[21] Pozsgay L., Liberal intuitionism as a basis for set theory , Axiomatic Set Theory, Proceedings of Symposia in Pure Mathematics XIII, vol. 1 (1971), pp. 321330.
[22] Pozsgay L., Semi-intuitionistic set theory . Notre Dame Journal of Formal Logic, vol. 13 (1972), pp. 546550.
[23] Rathjen M., Realizability for Constructive Zermelo-Fraenkel Set Theory (Väänänen J. and Stoltenberg-Hansen V., editors), Logic Colloquium 2003, Lecture Notes in Logic 24, A.K. Peters, Natick, MA, 2006, pp. 282314.
[24] Rathjen M., The formulae-as-classes interpretation of constructive set theory, Proof Technology and Computation (Schwichtenberg H. and Spies K., editors), pp. 279322, IOS Press, Amsterdam, 2006.
[25] Rathjen M., The disjunction and other properties for constructive Zermelo-Fraenkel set theory, this Journal, vol. 70 (2005), pp. 12331254.
[26] Rathjen M., Metamathematical Properties of Intuitionistic Set Theories with Choice Principles , New Computational Paradigms: Changing Conceptions of What is Computable, (Cooper S. B., Löwe B., Sorbi A., editors), Springer, New York, 2008, pp. 287312.
[27] Rathjen M., From the weak to the strong existence property . Annals of Pure and Applied Logic, vol. 163 (2012), pp. 14001418.
[28] Takeuti G. and Wilson W. M., Introduction to Axiomatic Set Theory, Springer, New York, Heidelberg, Berlin, 1971.
[29] Tharp L., A quasi-intuitionistic set theory, this Journal, vol. 36 (1971), pp. 456460.
[30] Wolf R. S., Formally Intuitionistic Set Theories with Bounded Predicates Decidable, PhD Thesis, Stanford University, Stanford, CA, 1974.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 184 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd January 2018. This data will be updated every 24 hours.