Home

# Lawvere's basic theory of the category of categories

## Extract

It is long known that Lawvere's theory in The category of categories as foundations of mathematics A[1] does not work, as indicated in Ishell's review [0]. Isbell there gives a counterexample that CDT—Category Description Theorem—[1, p. 15] is in fact not a theorem of BT (the Basic Theory of [1]) and suggests adding CDT to the axioms.

Our starting point was the claim in [1] that “the basic theory needs no explicit axiom of infinity.” We define a model ℳ of BT in which all categories are finite. In particular, the “monoid of nonnegative integers N” coincides in ℳ with the terminal object 1. We study ℳ in some detail in order to establish the true status of various “theorems” or “metatheorems” of BT: The metatheorem of [1, p. 11] saying that the discrete categories form a category of sets, CDT, the theorem on p. 15, and the theorem on p. 16 of [1] are all nontheorems. The remaining results indicated in [1] concerning BT are provable. However, as the Predicative Functor Construction Schema—PFCS—are justified in [1] by using the “metatheorem” and CDT, we provide a proof of these two schemata by showing that the discrete categories of BT (or of convenient extensions of BT) form a two-valued Boolean topos.

## References

Hide All
[0]Isbell, J. R., Review of [1], Mathematical Reviews, vol. 34 (1967), #7332.
[1]Lawvere, F. W., The category of categories as a foundation for mathematics, Proceedings of a Conference on Categorical Algebra (La Jolla, California, 1965), Springer, New York, 1966, pp. 120.
[2]Lawvere, F. W., An elementary theory of the category of sets, Proceedings of the National Academy of Sciences of the U.S.A., vol. 52 (1964), pp. 15061511.
[3]MacLane, S., Categories for the working mathematician, Springer, New York, 1971.
Recommend this journal

The Journal of Symbolic Logic
• ISSN: 0022-4812
• EISSN: 1943-5886
• URL: /core/journals/journal-of-symbolic-logic
Who would you like to send this to? *

×

## Metrics

### Full text viewsFull text views reflects the number of PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 0 *