Home
• Aa
• Aa

# Local behaviour of the Chebyshev theorem in models of I⊿0

Abstract

Let I0 denote the fragment of Peano arithmetic where induction is restricted only to bounded formulas (⊿0-formulas), i.e. formulas where all the quantifiers are bounded. We will examine the behaviour in I0 of Chebyshev's classical result on the distribution of primes. Chebyshev showed that each of the following functions on N is bounded by a polynomial in each of the others:

In his proof he used, as auxiliaries, factorials and binomial coefficients.

When we work in a weak system like I0 we have to deal with two problems:

(i) There is not an immediate meaning for symbols like xy, Πpxp, and x!.

(ii) Some basic functions like exponentiation, factorial, and product of primes up to a certain element, are in general only partially definable.

The first problem is equivalent to finding ⊿0-formulas representing the relations z = xy, y = Πpxp, and y = x!. While we can easily express that y is the product of all primes less than or equal to x in a ⊿0-way, it requires a subtle argument to define z = xy by a ⊿0-formula. The most natural way of expressing it is via the formalization of the Chinese remainder theorem coding the recursion procedure used in the definition of xy. But this can be expressed only via a Σ1-formula. ⊿0-definitions of exponentiation were given by Paris and Bennett (see [GD] and [B]), and all sensible definitions of this type are equivalent (see Remark 1). Later we will examine properties of such a definition E0(x, y, z). The ⊿00-definition of y = Πpxp is much more straightforward, since both the relation of being a prime and the divisibility relation are ⊿0-definable. We will give an explicit definition of it and denote it by Ψ(x, y). In this way, by a ⊿0-induction, we will be able to prove the uniqueness of the elements y and z satisfying Ψ(x, y) and E0(x, y, z), respectively.

References
Hide All
[B]Bennett J. H., On spectra, Ph.D. thesis, Princeton University, Princeton, New Jersey, 1962.
[GD]Gaifman H. and Dimitracopoulos C., Fragments of Peano's arithmetic and the MRDP theorem, Logic and algorithmic, Monographies de L'Enseignement Mathématique, no. 30, Université de Genève, Genève, 1982, pp. 187206.
[HW]Hardy G. H. and Wright E. M., An introduction to the theory of numbers, 3rd ed., Oxford University Press, Oxford, 1954.
[P]Parikh R., Existence and feasibility in arithmetic, this Journal, vol. 36 (1971), pp. 494508.
[PW1]Paris J. and Wilkie A., On the scheme of induction for bounded arithmetic formulas, Annals of Pure and Applied Logic, vol. 35 (1987), pp. 261302.
[PW2]Paris J. and Wilkie A., Counting problems in bounded arithmetic, Methods in mathematical logic (proceedings of the sixth Latin American symposium on mathematical logic, Caracas, 1983), Lecture Notes in Mathematics, vol. 1130, Springer-Verlag, Berlin, 1985, pp. 317340.
[PWW]Paris J., Wilkie A. and Woods A., Provability of the pigeonhole principle and the existence of infinitely many primes, this Journal, vol. 53 (1988), pp. 12351244.
[W]Woods A., Some problems in logic and number theory and their connections, Ph.D. thesis, University of Manchester, Manchester, 1981.
Recommend this journal

The Journal of Symbolic Logic
• ISSN: 0022-4812
• EISSN: 1943-5886
• URL: /core/journals/journal-of-symbolic-logic
Who would you like to send this to? *

×

## Full text viewsFull text views reflects the number of PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 1 *