Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-07T01:06:45.929Z Has data issue: false hasContentIssue false

Logic in the twenties: the nature of the quantifier1

Published online by Cambridge University Press:  12 March 2014

Warren D. Goldfarb*
Affiliation:
Harvard University, Cambridge, Massachusetts 02138

Extract

We are often told, correctly, that modern logic originated with Frege. For Frege clearly depicted polyadic predication, negation, the conditional, and the quantifier as the bases of logic; moreover, he introduced the idea of a formal system, and argued that mathematical demonstrations, to be fully precise, must be carried out within a formal language by means of explicitly formulated syntactic rules.

Consequently Frege has often been read as providing all the central notions that constitute our current understanding of quantification. For example, in his recent book on Frege [1973], Michael Dummett speaks of ”the semantics which [Frege] introduced for formulas of the language of predicate logic.” That is, “An interpretation of such a formula … is obtained by assigning entities of suitable kinds to the primitive nonlogical constants occurring in the formula … [T]his procedure is exactly the same as the modern semantic treatment of predicate logic” (pp. 89–90). Indeed, “Frege would therefore have had within his grasp the concepts necessary to frame the notion of the completeness of a formalization of logic as well as its soundness … but he did not do so” (p. 82).

This common appraisal of Frege's work is, I think, quite misleading. Even given Frege's tremendous achievements, the road to an understanding of quantification theory was an arduous one. Obtaining such understanding and formulating those notions which are now common coin in the discussion of logical systems were the tasks of much of the work in logic during the nineteen-twenties.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This paper, an interpretive essay on the history of logic, is a revised version of an invited address delivered to a joint session of the Association for Symbolic Logic and the American Philosophical Association, Western Division, in Chicago on April 29, 1977. I am grateful to Burton Dreben and Michael Friedman for helpful comments.

References

REFERENCES

Ackermann, Wilhelm [1924] Begründung des ‘tertium non datur’ mittels der Hilberstchen Theorie der Widerspruchsfreiheit, Mathematische Annalen, vol. 93, pp. 136.CrossRefGoogle Scholar
Ackermann, Wilhelm [1940] Zur Widerspruchsfreiheit der Zahlentheorie, Mathematische Annalen, vol. 117, pp. 162194.CrossRefGoogle Scholar
Behmann, Heinrich [1922] Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem, Mathematische Annalen, vol. 86, pp. 163229.CrossRefGoogle Scholar
Bernays, Paul [1922] Review of Behmann [1922], Jahrbuch über die Fortschritte der Mathematik, vol. 48, p. 1119.Google Scholar
Bernays, Paul and Schönfinkel, Moses [1928] Zum Entscheidungsproblem der mathematischen Logik, Mathematische Annalen, vol. 99, pp. 342372.CrossRefGoogle Scholar
Dummett, Michael [1973] Frege: Philosophy of language, Duckworth, London; Harper & Row, New York.Google Scholar
Fraenkel, Abraham [1923] Review of Skolem [1922], Jahrbuch über die Fortschritte der Mathematik, vol. 49, p. 138.Google Scholar
Frege, Gottlob [1882] Über den Zweck der Begriffsschrift, Sitzungsberichte der Jenaischen Gesellschaft für Medicin und Naturwissenschaft für das Jahr 1882 (1883), pp. 110.Google Scholar
Frege, Gottlob [1892] Über Begriff und Gegenstand, Vierteljahrschrift für wissenschaftliche Philosophie, vol. 16, 192205; English translation in Frege [1952].Google Scholar
Frege, Gottlob [1893] Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet, vol. 1, Pohle, Jena; partial English translation in Frege [1964].Google Scholar
Frege, Gottlob [1895] Kritische Beleuchtung einiger Punkte in E. Schröders Vorlesungen über die Algebra der Logik, Archiv für systematische Philosophie, vol. 1, pp. 433456; English translation in Frege [1952].Google Scholar
Frege, Gottlob [1903] Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet, vol. 2, Pohle, Jena; partial English translation in Frege [1964].Google Scholar
Frege, Gottlob [1906] Über die Grundlagen der Geometrie. III, Jahresbericht der Deutschen Mathematiker Vereinigung, vol. 15, pp. 423430.Google Scholar
Frege, Gottlob [1952] Translations from the philosophical writings of Gottlob Frege (Geach, Peter and Black, Max, editors), Blackwell, Oxford; second edition, 1960.Google Scholar
Frege, Gottlob [1964] The basic laws of arithmetic: Exposition of the system (Montgomery Furth, translator and editor), University of California Press, Berkeley.CrossRefGoogle Scholar
Gentzen, Gerhard [1936] Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische Annalen, vol. 112, pp. 493565.CrossRefGoogle Scholar
Gödel, Kurt [1930] Über die Vollständigkeit des Logikkalküls, thesis, University of Vienna.Google Scholar
Gödel, Kurt [1930a] Die Vollständigkeit der Axiome des logischen Funktionenkalküls, Monatshefte für Mathematik und Physik, vol. 37, pp. 349360; English translation in van Heijenoort [1967].CrossRefGoogle Scholar
Gödel, Kurt [1931] Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I, Monatshefte für Mathematik und Physik, vol. 38, pp. 173198; English translation in van Heijenoort [1967].CrossRefGoogle Scholar
Goldfarb, Warren [1971] Review of Skolem [1970], Journal of Philosophy, vol. 68, pp. 520530.CrossRefGoogle Scholar
Herbrand, Jacques [1928] Sur la théorie de la démonstration, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, vol. 186, pp. 12741276; English translation in Herbrand [1971].Google Scholar
Herbrand, Jacques [1930] Recherches sur la théorie de la démonstration, Thesis, University of Paris; English translation in Herbrand [1971]; partial English translation in van Heijenoort [1967].Google Scholar
Herbrand, Jacques [1971] Logical writings (Goldfarb, Warren D., editor), Reidel, Dordrecht; Harvard University Press, Cambridge, Massachusetts.CrossRefGoogle Scholar
Hilbert, David [1900] Mathematische Probleme, Vortrag, gehalten auf dem internationalen Mathematiker Kongress zu Paris 1900, Archiv der Mathematik und Physik, 3rd series, vol. 1 (1901), pp. 4463, 213–237.Google Scholar
Hilbert, David [1904] Über die Grundlagen der Logik und der Arithmetik, Verhandlungen des Dritten Internationalen Mathematiker-Kongress in Heidelberg vom 8 bis 13 August 1904, Teubner, Leipzig, 1905; English translation in van Heijenoort [1967].Google Scholar
Hilbert, David [1918] Axiomatisches Denken, Mathematische Annalen, vol. 78, pp. 405415.CrossRefGoogle Scholar
Hilbert, David [1922] Neubegründung der Mathematik, Erste Mitteilung, Abhandlungen aus dem mathematisehen Seminar der Hamburgischen Universität, vol. 1, pp. 157177.CrossRefGoogle Scholar
Hilbert, David [1923] Die logischen Grundlagen der Mathematik, Mathematische Annalen, vol. 88, pp. 151165.CrossRefGoogle Scholar
Hilbert, David [1925] Über das Unendliche, Mathematische Annalen, vol. 95, pp. 161190; English translation in van Heijenoort [1967].CrossRefGoogle Scholar
Hilbert, David and Ackermann, Wilhelm [1928] Grundzüge der theoretischen Logik, Springer, Berlin.Google Scholar
Hilbert, David and Ackermann, Wilhelm [1938] Grundzüge der theoretischen Logik, 2nd edition, Springer, Berlin.CrossRefGoogle Scholar
Hilbert, David and Bernays, Paul [1934] Grundlagen der Mathematik, vol. 1, Springer, Berlin.Google Scholar
Löwenheim, Leöpold [1913] Review of Alessandro Padoa: La logique déductive dans sa dernière phase de développement, Archiv der Mathematik und Physik, 3rd series, vol. 21, pp. 360361.Google Scholar
Löwenheim, Leöpold [1915] Über Möglichkeiten im Relativkalkül, Mathematische Annalen, vol. 76, pp. 447470; English translation in van Heijenoort [1967].CrossRefGoogle Scholar
Löwenheim, Leöpold [1940] Einkleidung der Mathematik in Schröderschen Relativkalkül, this Journal, vol. 5, pp. 115.Google Scholar
Russell, Bertrand [1903] The principles of mathematics, Cambridge University Press, Cambridge.Google Scholar
Russell, Bertrand [1919] Introduction to mathematical philosophy, Allen and Unwin, London; Macmillan, New York.Google Scholar
Schröder, Ernst [1895] Vorlesungen über die Algebra der Logik, vol. 3, Algebra und Logik der Relative, Leipzig.Google Scholar
Sheffer, Harry [1926] Review of Whitehead and Russell [1925], Isis, vol. 8, pp. 226231.CrossRefGoogle Scholar
Skolem, Thoralf [1920] Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theorem über dichte Mengen, Videnskapsselskapets skrifter. I. Matematisk-naturvidenskabelig klasse, no. 4; reprinted in Skolem [1970]; English translation in van Heijenoort [1967].Google Scholar
Skolem, Thoralf [1922] Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre, Matematiker-kongressen i Helsingfors den 4–7 July 1922, Den femte skandinaviska materna-tikerkongressen, Redogörelse, Helsinki, 1923, pp. 217232; English translation in van Heijenoort [1967].Google Scholar
Skolem, Thoralf [1923] Begründüng der elementaren Arithmetik durch die rekurrierende Denkweise ohne Anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbereich, Videnskapsselskapets skrifter. I. Matematisk-naturvidenskabelig klasse, no. 6; English translation in van Heijenoort [1967].Google Scholar
Skolem, Thoralf [1928] Über die mathematische Logik, Norsk matematisk tidsskrift, vol. 10, pp. 125142; English translation in van Heijenoort [1967].Google Scholar
Skolem, Thoralf [1929] Über einige Grundlagenfragen der Mathematik, Skrifter utgitt av Det Norske Videns-kaps-Akademi i Olso. I. Matematisk-naturvidenskabelig klasse, no. 4.Google Scholar
Skolem, Thoralf [1934] Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen, Fundamenta Mathematicae, vol. 23, pp. 150161.CrossRefGoogle Scholar
Skolem, Thoralf [1938] Sur la portée du théorème de Löwenheim-Skolem, Les Entretiens de Zurich sur les Fondements et la Méthode des Sciences Mathématiques, 6–9 Décembre 1938 (Gonseth, F., editor), Leeman, Zurich, 1941, pp. 2547.Google Scholar
Skolem, Thoralf [1970] Selected works in logic (Fenstad, J. E., editor), Universitetsforlaget, Oslo.Google Scholar
Tarski, Alfred [1933] Pojȩcie prawdy w jȩzykach nauk dedukcyjnych (The concept of truth in the language of the deductive sciences), Prace Towarzystwa Naukowego Warsqawskiego, Wydzial III, no. 34, Warsaw.Google Scholar
Van Heijenoort, Jean [1967] From Frege to Gödel: A source book in mathematical logic, 1879–1931, Harvard University Press, Cambridge, Massachusetts.Google Scholar
Von Neumann, John [1925] Eine Axiomatisierung der Mengenlehre, Journal für die reine und angewandte Mathematik, vol. 154, pp. 219240; English translation in van Heijenoort [1967].CrossRefGoogle Scholar
Von Neumann, John [1927] Zur Hilbertschen Beweistheorie, Mathematische Zeitschrift, vol. 26, pp. 146.CrossRefGoogle Scholar
Whitehead, Alfred North and Russell, Bertrand [1910] Principia mathematica, vol. 1, Cambridge University Press, Cambridge.Google Scholar
Whitehead, Alfred North and Russell, Bertrand [1912] Principia mathematica, vol. 2, Cambridge University Press, Cambridge.Google Scholar
Whitehead, Alfred North and Russell, Bertrand [1913] Principia mathematica, vol. 3, Cambridge University Press, Cambridge.Google Scholar
Whitehead, Alfred North and Russell, Bertrand [1925] Principia mathematica, 2nd edition, vol. 1, Cambridge University Press, Cambridge.Google Scholar
Wittgenstein, Ludwig [1922] Tractatus logico-philosophicus, Kegan, Paul, London.Google Scholar