[1]Ajtai, M., *The complexity of the pigeonhole principle*, Proceedings of the 29th Annual Symposium on the Foundations of Computer Science (FOCS ′88), IEEE Computer Society, White Plains, New York, pp. 346–355, 1988.

[2]Ajtai, M., *Approximate counting with uniform constant-depth circuits*, Advances in computational complexity theory, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 13, pp. 1–20, 1993.

[3]Ajtai, M. and Ben-Or, M., *A theorem on probabilistic constant depth computations*, Proceedings of the 16th Annual ACM Symposium on Theory of Computing (STOC ′84), pp. 471–474, http://doi.acm.org/10.1145/800057.808715, ACM, New York, NY, 1984. [4]Atserias, A., *Improved bounds on the weak pigeonhole principle and infinitely many primes from weaker axioms*. Theoretical Computer Science, vol. 295 (2003), no. 1–3, pp. .

[5]Atserias, A., *On sufficient conditions for unsatisfiability of random formulas*. Journal of the ACM, vol. 51 (2004), no. 2, pp. 281–311.

[6]Atserias, A., Bonet, M.L., and Esteban, J.L., *Lower bounds for the weak pigeonhole principle and random formulas beyond resolution*. Information and Computation, vol. 176 (2002), no. 2, pp. 136–152.

[7]Barrington, D. A. M., Immerman, N., and Straubing, H., *On uniformity within NC*. Journal of Computer and System Sciences, vol. 41 (1990), no. 3, pp. 274–306.

[8]Beame, P., Impagliazzo, R., and Pitassi, T., *Exponential lower bounds for the pigeonhole principle*. Computational Complexity, vol. 3 (1993), no. 2, pp. 97–140.

[9]Ben-Sasson, E. and Galesi, N., *Space complexity of random formulae in resolution*. Random Structures and Algorithms, vol. 23 (2003), no. 1, pp. 92–109.

[10]Ben-Sasson, E. and Wigderson, A., *Short proofs are narrow – resolution made simple*. Journal of the ACM, vol. 48 (2001), no. 2, pp. 149–169.

[11]Bollobás, B., Random Graphs, second edition, Cambridge University Press, Cambridge, UK, 2001.

[12]Buss, S. R., , this Journal, vol. 52 (1987), no. 4, pp. 916–927.

[13]Buss, S. R., *First-Order Proof Theory of Arithmetic*, Handbook of Proof Theory (Buss, S. R., editor), Elsevier, 1998, pp. 79–147.

[14]Cook, S. A. and Reckhow, R. A., , this Journal, vol. 44 (1979), no. 1, pp. 36–50.

[15]Dantchev, S. and Riis, S., *On relativisation and complexity gap for resolution-based proof systems*, Proceedings of 17th Annual Conference of the European Association for Computer Science Logic (CSL), Lecture Notes in Computer Science, vol. 2803, pp. 142–154, Springer, Berlin, 2003.

[16]Furst, M. L., Saxe, J. B., and Sipser, M., *Parity, circuits, and the polynomial-time hierarchy*, Proceedings of the 22nd Annual Symposium on Foundations of Computer Science (FOCS ′81), pp. 260–270, IEEE Computer Society, Washington, DC, 1981.

[17]Furst, M. L., Saxe, J. B., and Sipser, M., *Parity, circuits, and the polynomial-time hierarchy*. Theory of Computing Systems, vol. 17 (1984), no. 1, pp. 13–27.

[18]Haken, A., *The intractability of resolution*, Theoretical Computer Science, vol. 39 (1985), no. 2–3, pp. 297–308.

[19]Krajíček, J., Bounded Arithmetic, Propositional Logic, and Complexity Theory, Encyclopedia of Mathematics and its Applications, vol. 60, Cambridge University Press, New York, 1995.

[20]Krajíček, J., *On the weak pigeonhole principle*. Fundamenta Mathematicae, vol. 170 (2001), no. 1–3, pp. 123–140.

[21]Krajíček, J., *Combinatorics of first order structures and propositional proof systems*. Archive for Mathematical Logic, vol. 43 (2004), no. 4, pp. 427–441.

[22]Krajíček, J., Pudlák, P., and Woods, A., *An exponential lower bound to the size of bounded depth Frege proofs of the pigeonhole principle*. Random Structures & Algorithms, vol. 7 (1995), no. 1, pp. 15–39.

[23]Maciel, A., Pitassi, T., and Woods, A. R., *A new proof of the weak pigeonhole principle*. Journal of Computer and System Sciences, vol. 64 (2002), no. 4, pp. 843–872.

[24]Paris, J.B. and Wilkie, A.J., *Counting problems in bounded arithmetic*, Methods in Mathematical Logic, Lecture Notes in Mathematics, vol. 1130, pp. 317–340, 1985.

[25]Paris, J.B., Wilkie, A.J., and Woods, A.R., , this Journal, vol. 53 (1988), no. 4, pp. 1235–1244.

[26]Pudlák, P., *A bottom-up approach to foundations of mathematics*, Gödel′ (Hajek, P., editor,) Lecture Notes in Logic, vol. 6, pp. 81–97, Springer, 1996.

[27]Pudlák, P., *Proofs as games*, American Mathematical Monthly, vol. 107, no. 6, pp. 541–550, 2000.

[28]Raz, R., *Resolution lower bounds for the weak pigeonhole principle*. Journal of the ACM, vol. 51 (2004), no. 2, pp. 115–138.

[29]Razborov, A. A., *Resolution lower bounds for the weak functional pigeonhole principle*. Theoretical Computer Science, vol. 1 (2003), no. 303, pp. 233–243.

[30]Razborov, A. A., *Pseudorandom generators hard for k-DNF resolution and polynomial calculus*, Annals of Mathematics, vol. 181 (2015), no. 2, pp. 415–472.

[31]Riis, S., *A complexity gap for tree-resolution*. Computational Complexity, vol. 10 (2001), pp. 179–209.

[32]Robbins, H., *A remark on Stirling’s formula*. The American Mathematical Monthly, vol. 62 (1955), no. 1, pp. 26–29.

[33]Segerlind, N., *The complexity of propositional proofs*. The Bulletin of Symbolic Logic, vol. 13 (2007), no. 4, pp. 417–481.

[34]Segerlind, N., Buss, S. R., and Impagliazzo, R., *A switching lemma for small restrictions and lower bounds for k-DNF resolution*. SIAM Journal on Computing, vol. 33 (2004), no. 5, pp. 1171–1200.

[35]Stockmeyer, L. J., *The Complexity of Approximate Counting (Preliminary Version)*, Proceedings of the 15th Annual ACM Symposium on Theory of Computing (STOC ′83), ACM, New York, NY, pp. 118–126, 1983.

[36]Viola, E., *On approximate majority and probabilistic time*. Computational Complexity, vol. 18 (2009), no. 3, pp. 337–375.

[37]Viola, E., *Randomness Buys Depth for Approximate Counting*. Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS ′11), IEEE Society Press, Palm Springs, CA, pp. 230–239, 2011.