[1]
Avigad, J.,
*Formalizing forcing arguments in subsystems of second-order arithmetic*
. Annals of Pure and Applied Logic, vol. 82 (1996), pp. 165–191.

[2]
Beklemishev, L. and Visser, A.,
*On the limit existence principles in elementary arithmetic and*
${\rm{\Sigma }}_n^0$
*-consequences of theories*
. Annals of Pure and Applied Logic, vol. 136 (2005), pp. 56–74.
[3]
Blanck, R.,
*Two consequences of Kripke’s lemma*
, Idées Fixes (Kaså, Martin, editor), University of Gothenburg Publications, 2014, pp. 45–53.

[4]
Boolos, G., The Logic of Provability, Cambridge University Press, Cambridge, 1979.

[6]
D’Aquino, P.,
*A sharpened version of McAloon’s theorem on initial segments of* IΔ_{0}
. Annals of Pure and Applied Logic, vol. 61 (1993), pp. 49–62.

[7]
Dimitracopoulos, C. and Paris, J.,
*A note on a theorem of H. Friedman*
. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 34 (1988), pp. 13–17.

[8]
Dimitracopoulos, C. and Paschalis, V.,
*End extensions of models of weak arithmetic theories*
. Notre Dame Journal of Formal Logic, to appear.

[9]
Enayat, A. and Wong, T.,
*Model theory of*
${\rm{WKL}}_0^{^{\rm{*}}}$
. Annals of Pure and Applied Logic, to appear.
[10]
Guaspari, D.,
*Partially conservative extensions of arithmetic*
. Transaction of the American Mathematical Society, vol. 254 (1979), pp. 47–68.

[11]
Hájek, P.,
*Interpretability and fragments of arithmetic*
. Arithmetic, Proof Theory, and Computational Complexity, Oxford University Press, Oxford, 1993, pp. 185–196.

[12]
Hájek, P. and Pudlák, P., Metamathematics of First-Order Arithmetic, Springer-Verlag, Berlin, 1993.

[13]
Japaridze, G. and de Jongh, D.,
*The logic of provability*
, Handbook of Proof Theory, North-Holland, Amsterdam, 1998, pp. 475–546.

[14]
Kaye, R., Models of Peano Arithmetic, Oxford University Press, Oxford, 1991.

[15]
Kossak, R. and Schmerl, J., The Structure of Models of Peano Arithmetic, Oxford University Press, Oxford, 2006.

[16]
Kripke, S.,
*“Flexible” predicates of formal number theory*
. Proceedings of the American Mathematical Society, vol. 13 (1962), pp. 647–650.

[17]
Lindström, P., Aspects of Incompleteness, Lecture Notes in Logic, vol. 10, ASL Publications, 1997.

[18]
McAloon, K., *On the complexity of models of arithmetic*, this Journal, vol. 47 (1982), pp. 403–415.

[19]
Ressayre, J.-P.,
*Nonstandard universes with strong embeddings, and their finite approximations*
, Logic and Combinatorics, Contemporary Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1987, pp. 333–358.

[20]
Rogers, H., Theory of Recursive Functions and Effective Computability, McGraw-Hill, Cambridge, MA, 1967.

[22]
Simpson, S., Subsystems of Second Order Arithmetic, Springer-Verlag, Berlin, 1999.

[23]
Smoryński, C., Modal Logic and Self-reference, Springer-Verlag, Berlin, 1985.

[24]
Verbrugge, R. and Visser, A., A small reflection principle for bounded arithmetic, this Journal, vol. 59 (1994), pp. 785–812.

[25]
Woodin, W. H.,
*A potential subtlety concerning the distinction between determinism and nondeterminism*
, Infinity, New Research Frontiers (Heller, M. and Woodin, W. H., editors), Cambridge University Press, Cambridge, 2011, pp. 119–129.