Skip to main content


  • M. LIEBERMAN (a1) and J. ROSICKÝ (a2)

We show that metric abstract elementary classes (mAECs) are, in the sense of [15], coherent accessible categories with directed colimits, with concrete ℵ1-directed colimits and concrete monomorphisms. More broadly, we define a notion of κ-concrete AEC—an AEC-like category in which only the κ-directed colimits need be concrete—and develop the theory of such categories, beginning with a category-theoretic analogue of Shelah’s Presentation Theorem and a proof of the existence of an Ehrenfeucht–Mostowski functor in case the category is large. For mAECs in particular, arguments refining those in [15] yield a proof that any categorical mAEC is μ- d -stable in many cardinals below the categoricity cardinal.

Hide All
[1] Ackerman, N., Completeness in generalized ultrametric spaces . P-Adic Numbers Ultrametric Analysis and Applications, vol. 5 (2013), no. 1, pp. 89105.
[2] Adámek, J. and Rosický, J., Locally Presentable and Accessible Categories, Cambridge University Press, Cambridge, 1994.
[3] Baldwin, J., Categoricity, American Mathematical Society, Providence, 2009.
[4] Baldwin, J., Ehrenfeucht-Mostowski models in abstract elementary classes , Logic and its Applications (Zhang, Y. and Blass, A., editors), Contemporary Mathematics, vol. 380, American Mathematical Society, Providence, 2005, pp. 117.
[5] Beke, T. and Rosický, J., Abstract elementary classes and accessible categories . Annals of Pure and Applied Logic, vol. 163 (2012), pp. 20082017.
[6] Boney, W., Tameness from large cardinal axioms , this Journal, vol. 79 (2014), no. 4, pp. 10921119.
[7] Boney, W., A presentation theorem for continuous logic and metric abstract elementary classes , arXiv:1408.3624.
[8] Boney, W., Grossberg, R., Lieberman, M., Rosický, J., and Vasey, S., μ-Abstract Elementary Classes and other generalizations . Journal of Pure and Applied Algebra, vol. 220 (2016), pp. 30483066.
[9] Garner, R. and Lack, S., Grothendieck quasitoposes . Journal of Algebra, vol. 355 (2012), pp. 111126.
[10] Hirvonen, A. and Hyttinen, T., Categoricity in homogeneous complete metric spaces . Archive of Mathematical Logic, vol. 48 (2009), pp. 269322.
[11] Henson, C. and Iovino, J.. Ultraproducts in analysis , Analysis and Logic (Mons, 1997), London Mathematical Society Lecture Note Series, vol. 262, Cambridge University Press, Cambridge, 2002, pp. 1110.
[12] Kirby, J., Abstract elementary categories, preprint, 2008.
[13] Lieberman, M., Category theoretic aspects of abstract elementary classes . Annals of Pure and Applied Logic, vol. 162 (2011), pp. 903915.
[14] Lieberman, M., A topology for types in abstract elementary classes . Mathematical Logic Quarterly, vol. 57 (2011), no. 2, pp. 204216.
[15] Lieberman, M. and Rosický, J., Classification theory for accessible categories , this Journal, vol. 81 (2016), no. 1, pp. 151165.
[16] Makkai, M. and Paré, R., Accessible Categories: The Foundations of Categorical Model Theory, American Mathematical Society, Providence, 1989.
[17] Priess-Crampe, S. and Ribenboim, P., Generalized ultrametric spaces I . Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 66 (1966), pp. 5573.
[18] Rosický, J., Accessible categories, saturation and categoricity , this Journal, vol. 62 (1997), pp. 891901.
[19] Vasey, S., Infinitary stability theory . Archive for Mathematical Logic, vol. 55 (2016), pp. 562592.
[20] Villaveces, A. and Zambrano, P., Limit models in metric abstract elementary classes: The categorical case , arXiv:1304.6797.
[21] Zambrano, P., Around superstability in metric abstract elementary classes, Ph.D. thesis, Universidad Nacional de Colombia, 2011.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed