Skip to main content
×
×
Home

Model theory of comodules

  • Septimiu Crivei (a1), Mike Prest (a2) and Geert Reynders (a3)
Extract

The purpose of this paper is to establish some basic points in the model theory of comodules over a coalgebra. It is not even immediately apparent that there is a model theory of comodules since these are not structures in the usual sense of model theory. Let us give the definitions right away so that the reader can see what we mean.

Fix a field k. A k-coalgebra C is a k-vector space equipped with a k-linear map Δ: CCC, called the comultiplication (by ⊗ we always mean tensor product over k), and a k-linear map ε: Ck, called the counit, such that Δ⊗1C = 1C ⊗ Δ (coassociativity) and (1Cε)Δ = 1C = (ε ⊗ 1C)Δ, where we identify C with both kC and Ck. These definitions are literally the duals of those for a k-algebra: express the axioms for C′ to be a k-algebra in terms of the multiplication map μ: C′ ⊗ C′ → C′ and the “unit” (embedding of k into C′), δ: kC′ in the form that certain diagrams commute and then just turn round all the arrows. See [5] or more recent references such as [7] for more.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 4 *
Loading metrics...

Abstract views

Total abstract views: 53 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th January 2018. This data will be updated every 24 hours.