Skip to main content Accessibility help




We define a functional interpretation of KP ω using Howard’s primitive recursive tree functionals of finite type and associated terms. We prove that the Σ-ordinal of KP ω is the least ordinal not given by a closed term of the ground type of the trees (the Bachmann-Howard ordinal). We also extend KP ω to a second-order theory with Δ 1-comprehension and strict- ${\rm{\Pi }}_1^1$ reflection and show that the Σ-ordinal of this theory is still the Bachmann-Howard ordinal. It is also argued that the second-order theory is Σ1-conservative over KPω.



Hide All
[1] Avigad, J. and Feferman, S., Gödel’s functional (“Dialectica”) interpretation, Handbook of proof theory (Buss, S. R., editor), Studies in Logic and the Foundations of Mathematics, vol. 137, North Holland, Amsterdam, 1998, pp. 337405.
[2] Avigad, J. and Towsner, H., Functional interpretation and inductive definitions, this Journal, vol. 74 (2009), no. 4, pp. 11001120.
[3] Bachmann, H., Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordnungszahlen. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, vol. 95 (1950), pp. 115–147.
[4] Barwise, J., Admissible set theory and structures: An approach to definability theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1975.
[5] Burr, W., A Diller-Nahm-style functional interpretation of KPω. Archive for Mathematical Logic, vol. 39 (2000), pp. 599604.
[6] Burr, W. and Hartung, V., A characterization of theΣ-definable functions of KPW + (uniform ) AC. Archive for Mathematical Logic, vol. 37 (1998), no. 3, pp. 199–214.
[7] Diller, J. and Nahm, W., Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen. Archive für mathematische Logik und Grundlagenforschung, vol. 16 (1974), pp. 4966.
[8] Feferman, S., The proof theory of classical and constructive inductive definitions. A 40-year saga, 1968–2008, Ways of proof theory (Ralph Schindler, editor), Ontos Mathematical Logic, vol. 2, Ontos Verlag, Frankfurt, 2011, pp. 7–29.
[9] Ferreira, F., Injecting uniformities into Peano arithmetic. Annals of Pure and Applied Logic, vol. 157 (2009), pp. 122129.
[10] Ferreira, F. and Ferreira, G., Harrington’s conservation theorem redone. Archive for Mathematical Logic, vol. 47 (2008), no. 2, pp. 91100.
[11] Ferreira, F. and Oliva, P., Bounded functional interpretation. Annals of Pure and Applied Logic, vol. 135 (2005), pp. 73112.
[12] Ferreira, F. and Oliva, P., On bounded functional interpretations. Annals of Pure and Applied Logic, vol. 163 (2012), no. 8, pp. 10301049.
[13] Gödel, K., Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. dialectica, vol. 12 (1958), pp. 280–287, Reprinted with an English translation in 15, pp. 240251.
[14] Gödel, K., On an extension of finitary mathematics which has not yet been used, 1972, Published in 15, pages 271–280. Revised version of 13.
[15] Gödel, K., Collected works , (Feferman et al., editors), vol. II, Oxford University Press, Oxford, 1990.
[16] Howard, W. A., A system of abstract constructive ordinals, this Journal, vol. 37 (1972), no. 2, pp. 355–374.
[17] Jäger, G., Die konstruktible Hierarchie als Hilfsmittel zur beweistheoretischen Untersuchung von Teilsystemen der Mengenlehre und Analysis , Ph.D. thesis, Ludwig-Maximilians-Universität, Munich, 1979.
[18] Oliva, P., Unifying functional interpretations. Notre Dame Journal of Formal Logic, vol. 47 (2006), pp. 263290.
[19] Pohlers, W., Proof theory. The first step into impredicativity , Universitext, Springer-Verlag, Berlin, 2009.
[20] Sacks, G., Higher recursion theory , Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1990.
[21] Salipante, V., On the consistency strenght of the strict Π1 reflection principle, Ph.D. thesis, Universität Bern, 2005.
[22] Shoenfield, J. R., Mathematical logic , Addison-Wesley Publishing Company, 1967, Republished in 2001 by AK Peters.
[23] Simpson, S. G., Subsystems of second order arithmetic , Perspectives in Mathematical Logic, Springer, Berlin, 1999.
[24] Stein, M., Interpretationen der Heyting-Arithmetik endlicher Typen. Archive für Mathematische Logik und Grundlagenforschung, vol. 19 (1979), pp. 4966.
[25] Troelstra, A. S., Introductory note to 13 and 14, 1990, Published in 15, pp. 214–241.
[26] Troelstra, A. S., Metamathematical investigation of intuitionistic arithmetic and analysis, Lecture Notes in Mathematics, vol. 344, Springer, Berlin, 1973.





Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.