Skip to main content
    • Aa
    • Aa

Non Σn axiomatizable almost strongly minimal theories

  • David Marker (a1)

Recall that a theory is said to be almost strongly minimal if in every model every element is in the algebraic closure of a strongly minimal set. In 1970 Hodges and Macintyre conjectured that there is a natural number n such that every ℵ0-categorical almost strongly minimal theory is Σn axiomatizable. Recently Ahlbrandt and Baldwin [A-B] proved that if T is ℵ0-categorical and almost strongly minimal, then T is Σn axiomatizable for some n. This result also follows from Ahlbrandt and Ziegler's results on quasifinite axiomatizability [A-Z]. In this paper we will refute Hodges and Macintyre's conjecture by showing that for each n there is an ℵ0-categorical almost strongly minimal theory which is not Σn axiomatizable.

Before we begin we should note that in all these examples the complexity of the theory arises from the complexity of the definition of the strongly minimal set. It is still open whether the conjecture is true if we allow a predicate symbol for the strongly minimal set.

We will prove the following result.

Theorem. For every n there is an almost strongly minimal ℵ0-categorical theory T with models M and N such that N is Σn elementary but not Σn + 1 elementary.

To show that these theories yield counterexamples to the conjecture we apply the following result of Chang [C].

Theorem. If T is a Σn axiomatizable theory categorical in some infinite power, M and N are models of T and N is a Σn elementary extension of M, then N is an elementary extension of M.

Hide All
[A-B]Ahlbrandt G. and Baldwin J., Categoricity and generalized model completeness, Archive for Mathematical Logic (to appear).
[A-Z]Ahlbrandt G. and Ziegler M., Quasi-finitely approximable totally categorical theories, Annals of Pure and Applied Logic, vol. 30 (1986), pp. 6382.
[C]Chang C. C., Omitting types of prenex formulas, this Journal, vol. 32 (1967), pp. 6174.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 59 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th October 2017. This data will be updated every 24 hours.