Skip to main content



We analyze the strength of the existence of idempotent ultrafilters in higher-order reverse mathematics.

Let $\left( {{{\cal U}_{{\rm{idem}}}}} \right)$ be the statement that an idempotent ultrafilter on ℕ exists. We show that over $ACA_0^\omega$ , the higher-order extension of ACA0, the statement $\left( {{{\cal U}_{{\rm{idem}}}}} \right)$ implies the iterated Hindman’s theorem (IHT) and we show that $ACA_0^\omega + \left( {{{\cal U}_{{\rm{idem}}}}} \right)$ is ${\rm{\Pi }}_2^1$ -conservative over $ACA_0^\omega + IHT$ and thus over $ACA_0^ +$ .

Hide All
[1]Avigad, Jeremy and Feferman, Solomon, Gödel’s functional (“Dialectica”) interpretation, Handbook of Proof Theory (Buss, S., editor), Studies in Logic and the Foundations of Mathematics, vol. 137, North-Holland, Amsterdam, 1998, pp. 337405.
[2]Bergelson, Vitaly, Ergodic Ramsey theory—an update, Ergodic Theory of Zd Actions (Warwick, 1993–1994), London Mathematical Society, Lecture Notes series, vol. 228, Cambridge University Press, Cambridge, 1996, pp. 161.
[3]Bergelson, Vitaly, Ultrafilters, IP sets, dynamics, and combinatorial number theory, Ultrafilters Across Mathematics, Contemporary Mathematics, vol. 530, American Mathematical Society, Providence, RI, 2010, pp. 2347.
[4]Bergelson, Vitaly and Hindman, Neil, Additive and multiplicative Ramsey theorems in N—some elementary results. Combinatorics, Probability and Computing, vol. 2 (1993), no. 3, pp. 221241.
[5]Bergelson, Vitaly and Tao, Terence, Multiple recurrence in quasirandom groups. Geometric and Functional Analysis, vol. 24 (2014), no. 1, pp. 148.
[6]Blass, Andreas, Ultrafilters related to Hindman’s finite-unions theorem and its extensions, Logic and Combinatorics (Arcata, Calif., 1985), Contemporary Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1987, pp. 89124.
[7]Blass, Andreas and Hindman, Neil, On strongly summable ultrafilters and union ultrafilters. Transactions of the American Mathmatical Society, vol. 30 (1987), no. 1, pp. 8397.
[8]Blass, Andreas R., Hirst, Jeffry L., and Simpson, Stephen G., Logical analysis of some theorems of combinatorics and topological dynamics, Logic and Combinatorics (Arcata, Calif., 1985), Contemporary Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1987, pp. 125156.
[9]Feferman, Solomon, Theories of finite type related to mathematical practice, Handbook of Mathematical Logic (Barwise, Jon, editor), Studies in Logic and the Foundations of Mathematics, vol. 90, North-Holland, Amsterdam, 1977, pp. 913971.
[10]Gödel, Kurt, Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica, vol. 12 (1958), pp. 280287.
[11]Hindman, Neil, Finite sums from sequences within cells of a partition of N. Journal of Combinatorial Theory, Series. A, vol. 17 (1974), pp. 111.
[12]Hindman, Neil and Strauss, Dona, Algebra in the Stone-Čech compactification, Theory and Applications, Second revised and extended edition, de Gruyter Textbook, Walter de Gruyter & Co., Berlin, 2012.
[13]Hirst, Jeffry L., Hindman’s theorem, ultrafilters, and reverse mathematics, this Journal, vol. 69 (2004), no. 1, pp. 65–72.
[14]Hunter, James, Higher-order Reverse Topology, Ph.D. thesis, University of Wisconsin-Madison, Madison, WI, 2008,∼lempp/theses/hunter.pdf.
[15]Kleene, Stephen C., Recursive functionals and quantifiers of finite types. I. Transactions of the American Mathematical Society, vol. 91 (1959), pp. 152.
[16]Kohlenbach, Ulrich, On the no-counterexample interpretation, this Journal, vol. 64 (1999), no. 4, pp. 1491–1511.
[17]Kohlenbach, Ulrich, Higher order reverse mathematics, Reverse Mathematics 2001, Lecture Notes in Logic, vol. 21, Association of Symbolic Logic, La Jolla, CA, 2005, pp. 281295.
[18]Kohlenbach, Ulrich, Applied Proof Theory: Proof Interpretations and Their Use in Mathematics, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2008.
[19]Kreuzer, Alexander P., Non-principal ultrafilters, program extraction and higher-order reverse mathematics. Journal of Mathematical Logic, vol. 12 (2012), no. 1, 1250002.
[20]Montalbán, Antonio, Open questions in reverse mathematics. Bulletin of Symbolic Logic, vol. 17 (2011), no. 3, pp. 431454.
[21]Towsner, Henry, Ultrafilters in reverse mathematics. Journal of Mathematical Logic, vol. 14 (2014), no. 1, p. 1450001 (11 pages).
[22]Troelstra, Anne S. (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Lecture Notes in Mathematics, vol. 344, Springer-Verlag, Berlin, 1973.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 88 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th March 2018. This data will be updated every 24 hours.