Skip to main content Accesibility Help

On revision operators

  • P. D. Welch (a1) (a2)

We look at various notions of a class of definability operations that generalise inductive operations, and are characterised as “revision operations”. More particularly we: (i) characterise the revision theoretically definable subsets of a countable acceptable structure; (ii) show that the categorical truth set of Belnap and Gupta's theory of truth over arithmetic using fully varied revision sequences yields a complete Σ31 set of integers; (iii) the set of stably categorical sentences using their revision operator Ψ is similarly Σ31 and which is complete in GÖdel's universe of constructive sets L; (iv) give an alternative account of a theory of truth—realistic variance that simplifies full variance, whilst at the same time arriving at Kripkean fixed points.

Corresponding author
Current address: Mathematisches Institut der Universität Bonn, Beringstr. 6, D-53115 Bonn, Germany, E-mail:
Hide All
[1]Antonelli, G. A., A revision-theoretic analysis of the arithmetical hierarchy, Notre Dame Journal of Formal Logic, vol. 35 (1994), pp. 204208.
[2]Barwise, K. J., Admissible sets and structures, Perspectives in Mathematical Logic, Springer Verlag, Berlin, Heidelberg, 1975.
[3]Burgess, J. P., The truth is never simple, this Journal, vol. 51 (1986), no. 3, pp. 663681.
[4]Chapuis, A., Alternate revision theories of truth, Journal of Philosophical Logic, vol. 25 (1996), pp. 399423.
[5]Clote, P., A generalization of the limit lemma and clopen games, this Journal, vol. 51 (1986), no. 2, pp. 273291.
[6]Devlin, K., Constructihility, Perspectives in Mathematical Logic, Springer Verlag, Berlin, Heidelberg, 1984.
[7]Friedman, H., Minimality in the Δ21 2-degrees, Fundamenta Mathematicae, vol. 81 (1974), pp. 183192.
[8]Gandy, R. O., On a proof of Mostowski's conjecture, Bulletin de l'Academie Polonaise des Sciences (sÉrie des sciences mathÉmatique, astronomique etphysique), vol. 8 (1960), pp. 571575.
[9]Gupta, A. and Belnap, N., The revision theory of truth, MIT Press, Cambridge MA, 1993.
[10]Hamkins, J. D. and Lewis, A., Infinite time Turing machines, this Journal, vol. 65 (2000), no. 2, pp. 567604.
[11]Herzberger, H. G., Naive semantics and the Liar paradox, The Journal of Philosophy, vol. 79 (1982), pp. 479497.
[12]Herzberger, H. G., Notes on naive semantics, Journal of Philosophical Logic, vol. 11 (1982), pp. 61102.
[13]Kremer, P., The Gupta-Belnap systems S# and S* are not axiomatisable, Notre Dame Journal of Formal Logic, vol. 34 (1993), pp. 583596.
[14]Kripke, S., Outline of a theory of truth, The Journal of Philosophy, vol. 72 (1975), pp. 690716.
[15]Löwe, B., Revision sequences and computers with an infinite amount of time, Proceedings of XVIII Deutscher Kongreβ für Philosophie der AGPD. Okt. 1999, reprinted in Journal of Logic and Computation, vol. 11 (2001), pp. 25–40.
[16]Löwe, B. and Welch, P. D., Set-theoretic absoluteness and the revision theory of truth, Stadia Logica, vol. 68 (2001), no. 1, pp. 2540.
[17]Moschovakis, Y., Elementary induction on abstract structures, Studies in Logic series, vol. 77, North-Holland, 1974.
[18]Moschovakis, Y., On non-monotone inductive definitions, Fundamenta Mathematicae, vol. 82 (1974), pp. 3983.
[19]Rogers, H., Recursive function theory, Series in Higher Mathematics, McGraw-Hill, 1967.
[20]Welch, P. D., On an algorithmic theory of truth, in preparation.
[21]Welch, P. D., On Gupta-Belnap revision theories of truth, Kripkean fixedpoints, and the next stable set, The Bulletin of Symbolic Logic, vol. 7 (2001), no. 3, pp. 345360.
[22]Yaqūb, A., The liar speaks the truth. A defense of the revision theory of truth, Oxford University Press, New York, 1993.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed