[1]Bernays P., Hilbert, David, Encyclopedia of Philosophy (Edwards P., editor), Vol. 3, Macmillan and Free Press, New York, 1967, pp. 496–504.
[2]Brown D. K., Functional analysis in weak subsystems of second-order arithmetic, Ph.D. Thesis, Pennsylvania State University, University Park, Pa., 1987.
[3]Brown D. K. and Simpson S. G., Which set existence axioms are needed to prove the separable Hahn-Banach theorem?, Annals of Pure and Applied Logic, vol. 31 (1986), pp. 123–144.
[4]Corcoran J., Review of [17], Mathematical Reviews 82c:03013.
[5]Feferman S., Systems of predicative analysis. I, II, this Journal, vol. 29 (1964), pp. 1–30; vol. 33 (1968), pp. 193–220.
[6]Friedman H., Systems of second order arithmetic with restricted induction. I, II (abstracts), this Journal, vol. 41 (1976), pp. 557–559.
[7]Friedman H., personal communication to L. Harrington, 1977.
[8]Friedman H., Simpson S. G. and Smith R. L., Countable algebra and set existence axioms, Annals of Pure and Applied Logic, vol. 25 (1983), pp. 141–181; addendum, vol. 28 (1985), pp. 319–320.
[9]Gödel K., On formally undecidable propositions of Principia Mathematica and related systems. I, translated by van Heijenoort J., [27], pp. 596–616.
[10]Gödel K., Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica, vol. 12 (1958), pp. 280–287.
[11]Gödel K., What is Cantor's continuum problem?, Philosophy of mathematics: selected readings, 2nd ed. (Benacerraf P. and Putnam H., editors), Cambridge University Press, Cambridge, 1983, pp. 470–485.
[12]Harrington L., personal communication to H. Friedman, 1977.
[13]Hilbert D., On the infinite, translated by Bauer-Mengelberg S., [27], pp. 367–392.
[14]Hilbert D., The foundations of mathematics, translated by Bauer-Mengelberg S. and Føllesdal D., [27], pp. 464–479.
[15]Hilbert D. and Bernays P., Grundlagen der Mathematik. Vols. I, II, 2nd ed., Springer-Verlag, Berlin, 1968, 1970.
[16]Kitcher P.. Hubert's epistemology, Philosophy of Science, vol. 43 (1976), pp. 99–115.
[17]Kline M., Mathematics: the loss of certainty, Oxford University Press, New York, 1980.
[18]Lear J., Aristotelian infinity, Proceedings of the Aristotelian Society (New Series), vol. 80 (1980), pp. 187–210.
[19]Parsons C., On a number-theoretic choice schema and its relation to induction, Intuitionism and proof theory (Myhill J.et al., editors), North-Holland, Amsterdam, 1970, pp. 459–473.
[20]Sieg W., Fragments of arithmetic, Annals of Pure and Applied Logic, vol. 28 (1985), pp. 33–71.
[21]Simpson S. G., Which set existence axioms are needed to prove the Cauchy/Peano theorem for ordinary differential equations?, this Journal, vol. 49 (1984), pp. 783–802.
[22]Simpson S. G., Friedman's research on subsystems of second order arithmetic, Harvey Friedman's research in the foundations of mathematics (Harrington L.et al., editors), North-Holland, Amsterdam, 1985, pp. 137–159.
[23]Simpson S. G., Subsystems of Z_{2} and reverse mathematics, appendix to G. Takeuti, Proof theory, 2nd ed., North-Holland, Amsterdam, 1987, pp. 432–446.
[24]Simpson S. G., Subsystems of second order arithmetic (in preparation).
[25]Tait W. W., Finitism, Journal of Philosophy, vol. 78 (1981), pp. 524–546.
[26]Takeuti G., Recent topics on proof theory (in Japanese), Journal of the Japan Association for Philosophy of Science, vol. 17 (1984), pp. 1–5.
[27]Van Heijenoort J. (editor), From Frege to Godel: a source book in mathematical logic, 1879–1931, Harvard University Press, Cambridge, Mass., 1967.
[28]Wigner E. P., The unreasonable effectiveness of mathematics in the natural sciences, Communications on Pure and Applied Mathematics, vol. 13 (1960), pp. 1–14.