Skip to main content
×
Home
    • Aa
    • Aa

Pas d'imaginaires dans l'infini!

  • Anand Pillay (a1) and Bruno Poizat (a2)
Abstract

Dans Poizat [1981], le second auteur a montré qu'un sous-groupe infiniment définissable d'un groupe stable était intersection de sous-groupes définissables; il a posé la question de savoir si une relation d'équivalence E, infiniment définissable dans un modèle M d'une théorie stable T, était conjonction de relations d'équivalence définissables. Nous allons voir ici que c'est presque exact: c'est vrai si T est totalement transcendante, et, dans le cas général de stabilité E a toujours un raffinement E1 (plus précisément, E1 est la conjonction de E et de la relation “x et y ont même type”) qui a cette propriété; cela montre que cette relation E n'introduit pas d'imaginaires d'une nature vraiment différente de celle des imaginaires de Shelah: dans une théorie stable, un imaginaire infinitaire n'est rien d'autre qu'un ensemble d'imaginaires finis.

La démonstration du théorème principal de cette note s'appuie lourdement sur la construction Meq de Shelah, la machinerie de la déviation, les paramètres imaginaires canoniques pour la définition d'un type stable, etc…. Pour tout cela, les références adéquates sont Shelah [1978], Pillay [1983], et Poizat [1985, Chapitre 16].

Nouscommençons par préciser ce que nous entendons par “relation d'équivalence infiniment définissable”: une collection de formules e(, ȳ), et ȳ étant de longueur n, telle que, pour tout modèle M de T, les couples (, ȳ) qui les satisfont toutes forment une rélation d'équivalence E.

Copyright
References
Hide All
Pillay A. [1983], An introduction to stability theory, Clarendon Press, Oxford.
Poizat B. [1981], Sous-groupes definissables d'un groupe stable, this Journal, vol. 46, pp. 137146.
Poizat B. [1985], Cours de théorie des modèles, Nur al-Mantiq wal-Ma'arifah, Villeurbanne.
Shelah S. [1978], Classification theory and the number of nonisomorphic models, North-Holland, Amsterdam.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 51 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.