Skip to main content
×
×
Home

Pfaffian differential equations over exponential o-minimal structures

  • Chris Miller (a1) and Patrick Speissegger (a2)
Abstract

In this paper, we continue investigations into the asymptotic behavior of solutions of differential equations over o-minimal structures.

Let ℜ be an expansion of the real field (ℝ, +, ·).

A differentiable map F = (F1,…, F1): (a, b) → ℝi is ℜ-Pfaffian if there exists G: ℝ1+l → ℝl definable in ℜ such that F′(t) = G(t, F(t)) for all t ∈ (a, b) and each component function Gi: ℝ1+l → ℝ is independent of the last li variables (i = 1, …, l). If ℜ is o-minimal and F: (a, b) → ℝl is ℜ-Pfaffian, then (ℜ, F) is o-minimal (Proposition 7). We say that F: ℝ → ℝl is ultimately ℜ-Pfaffian if there exists r ∈ ℝ such that the restriction F ↾(r, ∞) is ℜ-Pfaffian. (In general, ultimately abbreviates “for all sufficiently large positive arguments”.)

The structure ℜ is closed under asymptotic integration if for each ultimately non-zero unary (that is, ℝ → ℝ) function f definable in ℜ there is an ultimately differentiable unary function g definable in ℜ such that limt→+∞[g′(t)/f(t)] = 1- If ℜ is closed under asymptotic integration, then ℜ is o-minimal and defines ex: ℝ → ℝ (Proposition 2).

Note that the above definitions make sense for expansions of arbitrary ordered fields.

Copyright
Corresponding author
Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, Wisconsin 53706, USA, E-mail: speisseg@math.wisc.edu, URL: http://www.math.wisc.edu/~speisseg
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 57 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th December 2017. This data will be updated every 24 hours.