Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T16:43:23.436Z Has data issue: false hasContentIssue false

POLYHEDRAL COMPLETENESS OF INTERMEDIATE LOGICS: THE NERVE CRITERION

Published online by Cambridge University Press:  14 November 2022

SAM ADAM-DAY*
Affiliation:
MATHEMATICAL INSTITUTE UNIVERSITY OF OXFORD OXFORD, UK
NICK BEZHANISHVILI
Affiliation:
INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION UNIVERSITY OF AMSTERDAM AMSTERDAM, THE NETHERLANDS E-mail: N.Bezhanishvili@uva.nl
DAVID GABELAIA
Affiliation:
A. RAZMADZE MATHEMATICAL INSTITUTE OF I. JAVAKHISHVILI TBILISI STATE UNIVERSITY TBILISI, GEORGIA E-mail: gabelaia@gmail.com
VINCENZO MARRA
Affiliation:
DIPARTIMENTO DI MATEMATICA ‘FEDERIGO ENRIQUES’ UNIVERSITÀ DEGLI STUDI DI MILANO MILAN, ITALY E-mail: Vincenzo.Marra@unimi.it

Abstract

We investigate a recently devised polyhedral semantics for intermediate logics, in which formulas are interpreted in n-dimensional polyhedra. An intermediate logic is polyhedrally complete if it is complete with respect to some class of polyhedra. The first main result of this paper is a necessary and sufficient condition for the polyhedral completeness of a logic. This condition, which we call the Nerve Criterion, is expressed in terms of Alexandrov’s notion of the nerve of a poset. It affords a purely combinatorial characterisation of polyhedrally complete logics. Using the Nerve Criterion we show, easily, that there are continuum many intermediate logics that are not polyhedrally complete but which have the finite model property. We also provide, at considerable combinatorial labour, a countably infinite class of logics axiomatised by the Jankov–Fine formulas of ‘starlike trees’ all of which are polyhedrally complete. The polyhedral completeness theorem for these ‘starlike logics’ is the second main result of this paper.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam-Day, S., Polyhedral completeness in intermediate and modal logics, M.Sc. thesis, Institute for Logic, Language and Computation, Universiteit van Amsterdam, 2019. Available at https://eprints.illc.uva.nl/1690/1/MoL-2019-08.text.pdf.Google Scholar
Adam-Day, S., Bezhanishvili, N., Gabelaia, D., and Marra, V., The logic of convex polyhedra, draft manuscript, 2020.Google Scholar
Aiello, M., van Benthem, J., and Bezhanishvili, G., Reasoning about space: The modal way . Journal of Logic and Computation , vol. 13 (2003), no. 6, pp. 889920.CrossRefGoogle Scholar
Alexander, J. W., The combinatorial theory of complexes . Annals of Mathematics , vol. 31 (1930), no. 2, pp. 292320.CrossRefGoogle Scholar
Alexandrov, P. S., Combinatorial Topology, vols. 1–3, Dover Books on Mathematics, Dover Publications, Mineola, NY, 1998, reprint of the 1956, 1957, and 1960 translations.Google Scholar
van Benthem, J. and Bezhanishvili, G., Modal logics of space , Handbook of Spatial Logics (Aiello, M., Pratt-Hartmann, I. E., and van Benthem, J., editors), Springer, Dordrecht, The Netherlands, 2007, pp. 217298.CrossRefGoogle Scholar
van Benthem, J., Bezhanishvili, G., and Gehrke, M., Euclidean hierarchy in modal logic . Studia Logica , vol. 75 (2003), no. 3, pp. 327344.CrossRefGoogle Scholar
Beynon, W. M., On rational subdivisions of polyhedra with rational vertices . Canadian Journal of Mathematics , vol. 29 (1977), no. 2, pp. 238242.CrossRefGoogle Scholar
Bezhanishvili, G. and Bezhanishvili, N., An algebraic approach to canonical formulas: Intuitionistic case . Review of Symbolic Logic , vol. 2 (2009), no. 3, pp. 517549.CrossRefGoogle Scholar
Bezhanishvili, G. and Bezhanishvili, N., Locally finite reducts of Heyting algebras and canonical formulas . Notre Dame Journal of Formal Logic , vol. 58 (2017), no. 1, pp. 2145.CrossRefGoogle Scholar
Bezhanishvili, G. and Gabelaia, D., Connected modal logics . Archive for Mathematical Logic , vol. 50 (2011), pp. 287317.CrossRefGoogle Scholar
Bezhanishvili, N., Lattices of intermediate and cylindric modal logics , PhD thesis, Institute for Logic, Language and Computation, Universiteit van Amsterdam, 2006.Google Scholar
Bezhanishvili, N., Marra, V., McNeill, D., and Pedrini, A., Tarski’s theorem on intuitionistic logic, for polyhedra . Annals of Pure and Applied Logic , vol. 169 (2018), no. 5, pp. 373391.CrossRefGoogle Scholar
Chagrov, A. and Zakharyaschev, M., Modal Logic , Oxford Logic Guides, vol. 35, Oxford Science Publications–The Clarendon Press–Oxford University Press, New York, 1997.CrossRefGoogle Scholar
Gabelaia, D., Gogoladze, K., Jibladze, M., Kuznetsov, E., and Uridia, L., An axiomatization of the d-logic of planar polygons , Language, Logic, and Computation (Silva, A., Staton, S., Sutton, P., and Umbach, C., editors), Springer, Berlin–Heidelberg, 2017.Google Scholar
Gabelaia, D., Gogoladze, K., Jibladze, M., Kuznetsov, E., and Marx, M., Modal logic of planar polygons, preprint, 2018, arXiv:1807.02868 [math.LO].Google Scholar
Higman, G., Ordering by divisibility in abstract algebras . Proceedings of the London Mathematical Society , vol. 3 (1952), no. 1, pp. 326336.CrossRefGoogle Scholar
Ilin, J., Filtration revisited: Lattices of stable non-classical logics , PhD thesis, Institute for Logic, Language and Computation, University of Amsterdam, 2018.Google Scholar
Maunder, C. R. F., Algebraic Topology , Cambridge University Press, Cambridge, The United Kingdom, 1980, first published by Van Nostrand Reinhold in 1970.Google Scholar
McKinsey, J. C. C., A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology, this Journal, vol. 6 (1941), no. 4, pp. 117–134.Google Scholar
McKinsey, J. C. C. and Tarski, A., The algebra of topology . Annals of Mathematics , vol. 45 (1944), no. 1, pp. 141191.CrossRefGoogle Scholar
McKinsey, J. C. C. and Tarski, A., On closed elements in closure algebras . Annals of Mathematics , vol. 47 (1946), no. 1, pp. 122162.CrossRefGoogle Scholar
Mundici, D., Advanced Łukasiewicz Calculus and MV-Algebras , Trends in Logic, vol. 35, Springer, Dordrecht, The Netherlands, 2011.CrossRefGoogle Scholar
Ranicki, A. and Weiss, M., On the algebraic L-theory of Δ-sets . Pure and Applied Mathematics Quarterly , vol. 8 (2012), p. 1.CrossRefGoogle Scholar
Rasiowa, H. and Sikorski, R., The Mathematics of Metamathematics , Monografie Matematyczne, vol. 41, Państwowe Wydawnictwo Naukowe, Warsaw, 1963.Google Scholar
Rauszer, C., Semi-Boolean algebras and their applications to intuitionistic logic with dual operations . Fundamenta Mathematicae , vol. 83 (1974), pp. 219249.CrossRefGoogle Scholar
Rourke, C. P. and Sanderson, B. J., Introduction to Piecewise-Linear Topology , Springer, Berlin, Germany, 1972.CrossRefGoogle Scholar
Spanier, E. H., Algebraic Topology , Springer, New York, 1966.Google Scholar
Stanley, R. P., Enumerative Combinatorics , vol. 1 , Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, The United Kingdom, 1997.CrossRefGoogle Scholar
Stone, M. H., Topological representations of distributive lattices and Brouwerian logics . Časopis pro pěstování matematiky a fysiky , vol. 67 (1938), no. 1, pp. 125.CrossRefGoogle Scholar
Tarski, A., Der Aussagenkalkul und die Topologie, this Journal, vol. 4 (1939), no. 1, pp. 26–27.Google Scholar
Tsao-Chen, T., Algebraic postulates and a geometric interpretation for the Lewis calculus of strict implication . Bulletin of the American Mathematical Society , vol. 44 (1938), no. 10, pp. 737744.CrossRefGoogle Scholar
Watanabe, M. and Schwenk, A. J., Integral starlike trees . Journal of the Australian Mathematical Society , vol. 28 (1979), no. 1, pp. 120128.CrossRefGoogle Scholar
Zakharyaschev, M., A sufficient condition for the finite model property of modal logics above K4 . Logic Journal of the IGPL , vol. 1 (1993), no. 1, pp. 1321.CrossRefGoogle Scholar