[1]Baumgartner, James, Iterated forcing, Surveys in Set Theory, London Mathematical Society Lecture notes, vol. 87, Cambridge University Press, Cambridge, 1983, pp. 1–55.

[2]Cantor, Georg, Über eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen, Journal für die Reine und Angewandte Mathematik, vol. 77 (1874), pp. 258–262.

[3]Cantor, Georg, Ein Bertrag zur Mannigfaltigkeitslehre, Journal für die Reine und Angewandte Mathematik, vol. 84 (1878), pp. 242–258.

[4]Cohen, Paul, The independence of the continuum hypothesis, Proceedings of the National Academy of Sciences. United States of America, vol. 50 (1963), pp. 105–110.

[5]Cummings, James, A model in which GCH holds at successors but fails at limits, Transactions of the American Mathematical Society, vol. 329 (1992), no. 1, pp. 1–39.

[6]Cummings, James and Woodin, Hugh, *A book on Radin forcing*, chapters from unpublished book.

[7]Devlin, Keith and Jensen, Ronald, Marginalia to a theorem of Silver, Logic conference Kiel 1974, Lecture Notes in Mathematics, vol. 499, Springer, Berlin, 1974, pp. 115–142.

[8]Easton, William, Powers of regular cardinals, Annals of Mathematical Logic, vol. 1 (1970), pp. 139–178.

[9]Foreman, Matthew and Woodin, Hugh, GCH can fail everywhere, Annals of Mathematics, vol. 133 (1991), no. 2, pp. 1–35.

[10]Galvin, Fred and Hajnal, András, Inequalities for cardinal powers, Annals of Mathematics, vol. 101 (1975), pp. 491–498.

[11]Gitik, Moti, Changing cofinalities and the non-stationary ideal, Israel Journal of Mathematics, vol. 56 (1986), pp. 280–314.

[12]Gitik, Moti and Magidor, Menachem, The singular cardinal hypothesis revisited, Set Theory of the Continuum (Judah, Haim, Just, Winfried, and Woodin, Hugh, editors), Springer-Verlag, 1992, pp. 243–278.

[13]Gitik, Moti and Merimovich, Carmi, Possible values for and , Annals of Pure and Applied Logic, vol. 90 (1997), pp. 193–241. [14]Gitik, Moti and Mitchell, William J., Indiscernible sequences for extenders, and the singular cardinal hypothesis, Annals of Pure and Applied Logic, vol. 82 (1996), no. 3, pp. 273–316.

[15]Gödel, Kurt, The consistency of the axiom of choice and of the generalized continuum hypothesis, Annals of Mathematics Studies, vol. 3 (1940), pp. 491–498.

[16]Magidor, Menachem, On the singular cardinal problem I, Israel Journal of Mathematics, vol. 28 (1977), pp. 1–31.

[17]Magidor, Menachem, On the singular cardinal problem H, Annals of Mathematics, vol. 106 (1977), pp. 517–549.

[18]Magidor, Menachem, Changing cofinality of cardinals, Fundamenta Mathematicae, vol. 99 (1978), pp. 61–71.

[19]Merimovich, Carmi, Extender based Radin forcing, Transactions of the American Mathematical Society, (1998), arXiv:matri.L0/0001121. Submitted.

[20]Mitchell, William, The core model for sequences of measures I, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 95 (1984), pp. 229–260.

[21]Mitchell, William, How weak is a closed unbounded ultrafilter?, Logic Colloquium '80 (van Dalen, D., Lascar, D., and Smiley, J., editors), North-Holland, 1992, pp. 209–230.

[22]Prikry, Karel, Changing measurable into accessible cardinal, Dissertationes Mathematicae, vol. 68 (1970), pp. 5–52.

[23]Radin, Lon Berk, Adding closed cofinal sequences to large cardinals, Annals of Mathematical Logic, vol. 22 (1982), pp. 243–261.

[24]Scott, Dana, Measurable cardinals and constructible sets, Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 9 (1961), pp. 521–524.

[25]Segal, Miri, On powers of singular cardinals with cofinality > *ω*, Master's thesis, The Hebrew University of Jerusalem, 1995.

[26]Shelah, Saharon, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer, Berlin, 1982.

[27]Silver, Jack, On the singular cardinal problem, Proceedings of the International Congress on Mathematicians (Vancouver), 1974, pp. 115–142.

[28]Silver, Jack, *Notes on reverse Easton forcing*, unpublished.