Skip to main content

A propositional calculus with denumerable matrix

  • Michael Dummett (a1)

§1. In [1] Gödel proves the non-existence of a finite matrix characteristic for the intuitionist propositional calculus IC by the use of the finite matrices , where n is a natural number and

Hide All
[1]Gödel, K., Zum iniuitionistischen Aussagenkalkül, Ergebnisse eines mathematischen Kolloquiums, Heft IV (for 1931–32, pub. 1933), p. 40.
[2]McKinsey, J. C. C. and Tarski, A., Some theorems about the sentential calculi of Lewis and Heyting, this Journal, vol. 13 (1948), pp. 115.
[3]Jaśkowski, S., Recherches sur le système de la logique intuitioniste, Actes du Congrès International de Philosophie Scientifique, VI Philosophie des mathématiques, Paris (Hermann & Cie.) 1936, pp. 5861.
[4]Rose, G. F., Propositional calculus and realizability, Transactions of the American Mathematical Society, vol. 75 (1953), pp. 119.
[5]Kleene, S. C., Introduction to metamathematics, Amsterdam (North Holland), Groningen (Noordhoff), New York and Toronto (Van Nostrand) 1952, x + 550 pp.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed