[Ba]
Baker, A., Transcendental number theory, Cambridge University Press, London and New York, 1975.

[Bu]
Büchi, J. R., The collected works of J. Richard Büchi (Maclane, S. and Siefkes, Dirk), editors Springer Verlag, New York, 1990.

[C]
Clemens, H., Homological equivalence modulo algebraic equivalence is not finitely generated, Institutdes Hautes Études Scientifiques, Publications Mathématiques,, vol. 58 (1983>, pp. 19–38.

[C-O-G-P]
Candelas, P., De La Ossa, X., Green, P., and Parkes, L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Physics B, vol. 359 (1991), pp. 21–74.

[C-V]
Conn, W. and Vaserstein, L., *On sums of three integral cubes*, preprint.

[D-M-R]
Davis, M., Matijasevic, Y., and Robinson, J., Diophantine equations: Positive aspects of a negative solution, Proceedings of Symposia in Pure Mathematics, vol. 28
American Mathematical Society, Providence, Rhode Island, (1976), pp. 323–378.

[De1]
Denef, J., Hilbert's tenth problem for quadratic rings, Proceedings of the American Mathematical Society, vol. 48 (1975>, pp. 214–220.

[De2]
Denef, J., Diophantine sets over algebraic integer rings II, Transactions of the American Mathematical Society, vol. 257 (1980), pp. 227–336.

[De-Li]
Denef, J. and Lipschitz, L., Diophantine sets over some rings of algebraic integers, Journal of the London Mathematical Society, vol. 18 (1978), pp. 385–391.

[E-S]
Ellingsrud, G. and Stromme, S., The number of twisted cubics on the general quintic threefold, Essays on mirror manifolds (Yau, S. T., editor), International Press, Hong Kong, (1992), pp. 181–240.

[F1]
Faltings, G., Diophantine approximation on abelian varieties, Annals of Mathematics, vol. 133 (1991), pp. 549–576.

[F2]
Faltings, G., *The general case of S. Lang's conjecture* (to appear).

[F-M-T]
Franks, J., Manin, Y., and Tschinkel, Y., Rational points of bounded height on Fano varieties, Inventiones Mathematicae, vol. 95 (1989), pp. 421–435.

[F-W]
Flath, D. and Wagon, S., How to pick out the integers in the rationals: An application of number theory to logic, American Mathematical Monthly, vol. 98 (1991), pp. 1–5.

[G-L-S]
Gardner, V., Lazarus, R., and Stein, P., Solutions of the diophantine equation x^{3} + y^{3} = z^{3} − d, Mathematics of Computation, vol. 18 (1964), pp. 408–413.

[Hua]
Hua, L. KI., On the least solution of Pell's equation, Bulletin of the American Mathematical Society, vol. 48 (1942), pp. 731–735.

[J-M]
Jones, J. and Matijasevic, Y., Proof of the recursive unsolvability of Hilbert's tenth problem, American Mathematical Monthly, vol. 98 (1991), pp. 689–709.

[K]
Katz, S., On the finiteness of rational curves on quintic threefolds, Compositio Mathematica, vol. 60 (1986), pp. 151–162.

[K-O]
Kobayashi, S. and Ochiaia, T., Meromorphic mappings into compact spaces of general type, Inventiones Mathematicae, vol. 31 (1975), pp. 7–16.

[L1]
Lang, S., Higher dimensional diophantine problems, Bulletin of the American Mathematical Society, vol. 80 (1974), pp. 779–787.

[L2]
Lang, S., Elliptic curves: Diophaantine analysis, Springer-Verlag, New York, 1978.

[L3]
Lang, S., Hyperbolic and Diophantine analysis, Bulletin of the American Mathematical Society, vol. 14 (1986), pp. 159–205.

[L4]
Lang, S., Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987.

[L5]
Lang, S., Number theory III, Encyclopedia of Mathematical Sciences, vol. 60, Springer Verlag, New York (1991).

[Man]
Manin, Y., A course in mathematical logic, Springer-Verlag, New York, 1977.

[Mat]
Matijasevic, Y., Enumerable sets are diophantine, Doklady Akademii Nauk SSSR, vol. 191; English translation, *
***Soviet Mathematics Doklady**
, vol. 11 (1970), pp. 354–358.

[Mo]
Morrison, D., *Symmetry and rational curves on quintic threefolds: a guide for mathematicians*, preprint.

[N]
Noguchi, J., A higher dimensional analogue of Mordell's conjecture over function fields, Mathematische Annalen, vol. 258 (1981), pp. 207–212.

[P1]
Pheidas, T., Hilbert's tenth problem for fields of rational functions over finite fields, Inventiones Mathematicae, vol. 103 (1991), pp. 1–8.

[P2]
Pheidas, T., *Extensions of Hilbert's tenth problem*, preprint.

[R]
Rumely, R., Undecidability and definability for the theory of global fields, Transactions of the American Mathematical Society, vol. 262 (1980), pp. 195–217.

[Sh]
Shlapentokh, A., Diophantine definition of integers in rings of rational numbers, Communications on Pure and Applied Mathematics, vol. XCLIV (1991), pp. 853–867.

[S1]
Silverman, J., The arithmetic of elliptic curves, Springer-Verlag, New York, 1986.

[S2]
Silverman, J., Rational points on K3 surfaces: A new canonical height, Inventiones Mathematicae, vol. 105 (1991), pp. 347–373.

[V1]
Vojta, P., Diophantine approximation and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin and New York, 1987.

[V2]
Vojta, P., *Arithmetic and hyperbolic geometry*, preprint.

[V3]
Vojta, P., *The exceptional set on Büchi surfaces and the n squares problem* (to appear).

[Y]
Yau, S.-T., Essays on mirror manifolds, International Press, Hong Kong, 1992.