[1]
Adeleke, S. A. and Macpherson, D.,
*Classification of infinite primitive Jordan permutation groups*
. Proceedings of the London Mathematical Society, vol. 72 (1996), no. 1, pp. 63–123.

[2]
Adeleke, S. A. and Neumann, P. M.,
*Primitive permutation groups with primitive Jordan sets*
. Proceedings of the London Mathematical Society, vol. 53 (1994), no. 2, pp. 209–229.

[3]
Adeleke, S. A. and Neumann, P. M., Relations Related to Betweenness: Their Structure and Automorphisms, Memoirs of the American Mathematical Society, vol. 623, American Mathematical Society, Providence, RI, 1998.

[4]
Aho, A., Sagiv, Y., Szymanski, T., and Ullman, J.,
*Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions*
. SIAM Journal on Computing, vol. 10 (1981), no. 3, pp. 405–421.

[5]
Bhattacharjee, M., Macpherson, D., Möller, R. G., and Neumann, P. M., Notes on Infinite Permutation Groups, Springer Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, 1998.

[6]
Bodirsky, M., *Complexity classification in infinite-domain constraint satisfaction*. Empowerment of Memory to Direct Research, Diderot University, 2012, available at arXiv:1201.0856 (In French).
[7]
Bodirsky, M.,
*Ramsey classes: Examples and constructions*
, Surveys in Combinatorics (Czumaj, A., Georgakopoulos, A., Král, D., Lozin, V., and Pikhurko, O., editors), London Mathematical Society Lecture Note Series, vol. 424, Cambridge University Press, Cambridge, 2015, pp. 1–48.

[8]
Bodirsky, M., Chen, H., and Pinsker, M., *The reducts of equality up to primitive positive interdefinability*, this Journal, vol. 75 (2010), no. 4, pp. 1249–1292.

[9]
Bodirsky, M., Hils, M., and Martin, B.,
*On the scope of the universal-algebraic approach to constraint satisfaction*
, Proceedings of the Annual Symposium on Logic in Computer Science (LICS) (Jouannaud, J-P., editor), IEEE Computer Society, Los Alamitos, CA, 2010, pp. 90–99.

[10]
Bodirsky, M., Jonsson, P., and Pham, T. V., *The complexity of phylogeny constraint satisfaction*,**
***Proceedings of the 33rd International Symposium on Theoretical Aspects of Computer Science (STACS-2016)*
, Orléans, France, Feb, 2016.

[11]
Bodirsky, M. and Kára, J.,
*The complexity of equality constraint languages*
. Theory of Computing Systems, vol. 3 (2008), no. 2, pp. 136–158. A conference version appeared in the proceedings of Computer Science Russia (CSR’06).

[12]
Bodirsky, M. and Kára, J.,
*The complexity of temporal constraint satisfaction problems*
. Journal of the Association for Computing Machinery, vol. 57 (2009), no. 2, pp. 1–41. An extended abstract appeared in the Proceedings of the Symposium on Theory of Computing (STOC’08).

[13]
Bodirsky, M. and Mueller, J. K.,
*Rooted phylogeny problems*
. Logical Methods in Computer Science, vol. 7 (2011), no. 4, pp. 165–173. An extended abstract appeared in the proceedings of ICDT’10.

[14]
Bodirsky, M. and Pinsker, M.,
*Reducts of Ramsey structures*
, Model Theoretic Methods in Finite Combinatorics (Grohe, M., and Makowsky, J. A., editors), AMS Contemporary Mathematics, vol. 558, American Mathematical Society, Providence, RI, 2011, pp. 489–519.

[15]
Bodirsky, M. and Pinsker, M.,
*Minimal functions on the random graph*
. Israel Journal of Mathematics, vol. 200 (2014), no. 1, pp. 251–296.

[16]
Bodirsky, M. and Pinsker, M.,
*Schaefer’s theorem for graphs*
. Journal of the Association for Computing Machinery, vol. 62 (2015), no. 3, Article no. 19, pp. 52. A conference version appeared in the Proceedings of STOC 2011, pp. 655–664.

[17]
Bodirsky, M., Pinsker, M., and Pongrácz, A.,
*The 42 reducts of the random ordered graph*
. Journal of the London Mathematical Society, vol. 111 (2015), no. 3, pp. 591–632. Preprint available at arXiv:1309.2165.
[18]
Bodirsky, M., Pinsker, M., and Tsankov, T., *Decidability of definability*, this Journal, vol. 78 (2013), no. 4, pp. 1036–1054. A conference version appeared in the Proceedings of LICS 2011.

[19]
Bodirsky, M. and Wrona, M.,
*Equivalence constraint satisfaction problems*
, Proceedings of Computer Science Logic (Cégielski, P. and Durand, A., editors), LIPICS, vol. 16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Wadern, 2012, pp. 122–136.

[20]
Bryant, D., **
***Building trees, hunting for trees, and comparing trees*
, Ph.D. thesis, University of Canterbury, 1997.

[21]
Bryant, D. and Steel, M.,
*Extension operations on sets of leaf-labelled trees*
. Advances in Applied Mathematics, vol. 16 (1995), pp. 425–453.

[22]
Cameron, P. J.,
*Transitivity of permutation groups on unordered sets*
. Mathematische Zeitschrift, vol. 148 (1976), pp. 127–139.

[23]
Cameron, P. J.,
*Some treelike objects*
. Quarterly Journal of Mathematics, Oxford Second Series, vol. 38 (1987), no. 150, pp. 155–183.

[24]
Cameron, P. J., Oligomorphic Permutation Groups, Cambridge University Press, Cambridge, 1990.

[25]
Cantor, G., Über unendliche, lineare Punktmannigfaltigkeiten. Mathematische Annalen, vol. 23 (1884), pp. 453–488.

[26]
Deuber, W.,
*A generalization of Ramsey’s theorem for regular trees*
. Journal of Combinatorial Theory, Series B, vol. 18 (1975), pp. 18–23.

[27]
Frasnay, C.,
*Quelques problèmes conbinatoires concernant les ordres totaux et les relations monomorphes*
. Annales de l’Institut Fourier (Grenoble), vol. 15 (1965), pp. 415–524.

[28]
Haskell, D. and Macpherson, D.,
*Cell decompositions of C-minimal structures*
. Annals of Pure and Applied Logic, vol. 66 (1994), pp. 113–162.

[29]
Henzinger, M., King, V., and Warnow, T.,
*Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology*
. Proceedings of the 7th Symposium on Discrete Algorithms (SODA’96) (Tardos, É., Editor), Association for Computing Machinery (ACM), and Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996, pp. 333–340.

[30]
Herwig, B., Macpherson, H. D., Martin, G., Nurtazin, A., and Truss, J. K., *On* ℵ_{0}
*-categorical weakly o-minimal structures*. Annals of Pure and Applied Logic, vol. 101 (2000), no. 1, pp. 65–93.

[31]
Hodges, W., A Shorter Model Theory, Cambridge University Press, Cambridge, 1997.

[32]
Junker, M. and Ziegler, M., *The 116 reducts of*
$\left( {Q, < ,a} \right)$
, this Journal, vol. 74 (2008), no. 3, pp. 861–884.
[33]
Kechris, A., Pestov, V., and Todorcevic, S.,
*Fraissé limits, Ramsey theory, and topological dynamics of automorphism groups*
. Geometric and Functional Analysis, vol. 15 (2005), no. 1, pp. 106–189.

[34]
Macpherson, D.,
*A survey of Jordan groups*
, Automorphisms of First-order Structures (Kaye, R. and Macpherson, D., editors), Oxford University Press, New York, NY, 1994, pp. 73–110.

[35]
Macpherson, D.,
*A survey of Homogeneous Structures*
. Discrete Mathematics, vol. 311 (2011), no. 15, pp. 1599–1634.

[36]
Macpherson, D. and Steinhorn, C.,
*On variants of o-minimality*
. Annals of Pure and Applied Logic, vol. 79 (1996), no. 2, pp. 165–209.

[37]
Milliken, K. R.,
*A Ramsey theorem for trees*
. Journal of Combinatorial Theory, Series A, vol. 26 (1979), no. 3, pp. 215–237.

[38]
Nešetřil, J.,
*Ramsey classes and homogeneous structures*
. Combinatorics, Probability & Computing, vol. 14 (2005), no. 1–2, pp. 171–189.

[39]
Ng, M. P., Steel, M., and Wormald, N. C.,
*The difficulty of constructing a leaf-labelled tree including or avoiding given subtrees*
. Discrete Applied Mathematics, vol. 98 (2000), pp. 227–235.

[40]
Pach, P. P., Pinsker, M., Pluhár, G., Pongrácz, A., and Szabó, C.,
*Reducts of the random partial order*
. Advances in Mathematics, vol. 267 (2014), pp. 94–120.

[41]
Ramsey, F. P.,
*On a problem of formal logic*
. Proceedings of the London Mathematical Society (2), vol. 30 (1930), no. 1, pp. 264–286.

[42]
Steel, M.,
*The complexity of reconstructing trees from qualitative charaters and subtrees*
. Journal of Classification, vol. 9 (1992), pp. 91–116.

[43]
Thomas, S., *Reducts of the random graph*, this Journal, vol. 56 (1991), no. 1, pp. 176–181.