Skip to main content
×
Home

SEPARATING FRAGMENTS OF WLEM, LPO, AND MP

  • MATT HENDTLASS (a1) and ROBERT LUBARSKY (a2)
Abstract
Abstract

We separate many of the basic fragments of classical logic which are used in reverse constructive mathematics. A group of related Kripke and topological models is used to show that various fragments of the Weak Law of the Excluded Middle, the Limited Principle of Omniscience, and Markov’s Principle, including Weak Markov’s Principle, do not imply each other.

Copyright
References
Hide All
[1] Akama Y., Berardi S., Hayashi S., and Kohlenbach U., An Arithmetical Hierarchy of the Law of Excluded Middle and Related Principles, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS ’04), IEEE Press, New Jersey, 2004, pp. 192201.
[2] Bishop E. A., Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
[3] Brattka V. and Gherardi G., Weihrauch degrees, omniscience principles and weak computability , this Journal, vol. 76 (2011), no. 1, pp. 143176.
[4] Brattka V., Hendtlass M., and Kreuzer A. P., On the uniform computational content of computability theory, http://arxiv.org/abs/1501.00433.
[5] Chen R.-M. and Rathjen M., Lifschitz realizability for intuitionistic Zermelo-Fraenkel set theory . Archive for Mathematical Logic, vol. 51 (2012), no. 7, 8, pp. 789818.
[6] van Dalen D., An interpretation of intuitionistic analysis . Annals of Mathematical Logic, vol. 13 (1978), no. 1, pp. 143.
[7] Friedman H. M., Set theoretic foundations for constructive analysis . Annals of Mathematics, vol. 105 (1977), no. 1, pp. 128.
[8] Friedman H. and Scedrov A., The lack of definable witnesses and provably recursive functions in intuitionistic set theories . Advances in Mathematics, vol. 57 (1985), pp. 113.
[9] Grayson R. J., Heyting-valued semantics , Logic Colloquium ’82 (Lolli G., Longo G., and Marcja A., editors), Studies in Logic and the Foundations of Mathematics 112, North Holland, Amsterdam, 1984, pp. 181208.
[10] Ishihara H., Markov’s principle, Church’s thesis and Lindelöf’s theorem. Indagationes Mathematicae, vol. 4 (1993), no. 3, pp. 321325.
[11] Ishihara H., Constructive reverse mathematics: Compactness properties , From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics (Crosilla L. and Schuster P., editors), Oxford University Press, Oxford, 2005, pp. 245267.
[12] Kohlenbach U., Relative constructivity , this Journal, vol. 63 (1998), pp. 12181238.
[13] Kohlenbach U., On weak Markov’s principle . Mathematical Logic Quarterly, vol. 48 (2002), Suppl. 1, pp. 5965.
[14] Kohlenbach U., Applied Proof Theory: Proof Interpretations and their Use in Mathematics, Springer, Berlin, 2008.
[15] Krol M., A topological model for intuitionistic analysis with Kripke’s Scheme . Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 24 (1978), pp. 427436.
[16] Lubarsky R. and Rathjen M., Realizability models separating various fan theorems , The Nature of Computation (Bonnizoni P., Brattka V., and Löwe B., editors), Proceedings of Computability in Europe 2013, LNCS 7921, Springer, Heidelberg, 2013, pp. 306315.
[17] Mandelkern M., Constructively complete finite sets . Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 34 (1988), pp. 97103.
[18] Mylatz U., Vergleich unstetiger Funktionen: “Principle of Omniscience” und Vollständigkeit in der C-Hierarchie, Ph.D. dissertation, Fernuniversität Hagen, 2006.
[19] Moschovakis J., A topological interpretation of second-order intuitionistic arithmetic . Compositio Mathematica, vol. 26 (1973), pp. 261276.
[20] van Oosten J., Realizability, Studies in Logic and the Foundations of Mathematics 152, Elsevier, Amsterdam, 2008.
[21] Rathjen M., Constructive Zermelo-Fraenkel set theory and the limited principle of omniscience . Annals of Pure and Applied Logic, vol. 165 (2014), pp. 563572.
[22] Richman F., Polynomials and linear transformations . Linear Algebra and its Applications, vol. 131 (1990), pp. 131137.
[23] Richman F., Weak Markov’s principle, strong extensionality, and countable choice, unpublished manuscript, 2000, available at http://math.fau.edu/richman/HTML/DOCS.HTM.
[24] Scott D., Identity and existence in intuitionistic logic , Applications of Sheaves (Fourman M., Mulvey C., and Scott D., editors), Lecture Notes in Mathematics 753, Springer, Berlin, 1979, pp. 660696.
[25] Simpson S., Subsystems of Second Order Arithmetic, Association for Symbolic Logic/Cambridge University Press, Cambridge, 2009.
[26] Toftdal M., Calibration of ineffective theorems of analysis in a constructive context , Master’s thesis, University of Aarhus, 2004; also as A Calibration of ineffective theorems of analysis in a hierarchy of semi-classical logical principles, ICALP 2004, LNCS 3142, 2004, pp. 11881200.
[27] Troelstra A. S., Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Lecture Notes in Mathematics 344, Springer, Berlin, 1973.
[28] Troelstra A. S., Realizability , Handbook of Proof Theory (Buss S., editor), Studies in Logic and the Foundations of Mathematics 137, Elsevier, Amsterdam, 1998, pp. 407474.
[29] Troelstra A. S. and van Dalen D., Constructivism in Mathematics, vol. 1, Studies in Logic and the Foundations of Mathematics 121, North Holland, Amsterdam, 1988.
[30] Troelstra A. S. and van Dalen D., Constructivism in Mathematics, vol. 2, Studies in Logic and the Foundations of Mathematics 123, North Holland, Amsterdam, 1988.
[31] Vesley R. E., Realizing Brouwer’s sequences . Annals of Pure and Applied Logic, vol. 81 (1996), pp. 2574.
[32] Weihrauch K., The TTE-Interpretation of Three Hierarchies of Omniscience Principles , Informatik Berichte Nr. 130, Fernuniversität Hagen, Hagen, 1992.
[33] Yu X. and Simpson S. G., Measure theory and weak König’s lemma . Archive for Mathematical Logic, vol. 30 (1990), pp. 171180.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 37 *
Loading metrics...

Abstract views

Total abstract views: 113 *
Loading metrics...

* Views captured on Cambridge Core between 1st December 2016 - 25th November 2017. This data will be updated every 24 hours.