Skip to main content Accessibility help

Superatomic Boolean algebras constructed from morasses

  • Peter Koepke (a1) and Juan Carlos Martínez (a2)


By using the notion of a simplified (κ, 1)-morass, we construct κ-thin-tall, κ-thin-thick and, in a forcing extension, κ-very thin-thick superatomic Boolean algebras for every infinite regular cardinal κ.



Hide All
[1]Baumgartner, J. E. and Shelah, S., Remarks on superatomic Boolean algebras, Annals of Pure and Applied Logic, vol. 33 (1987), pp. 109129.
[2]Devlin, K. J., Constructibility, Springer-Verlag, Berlin, 1984.
[3]Jech, T., Set theory, Academic Press, New York, 1978.
[4]Juhász, I. and Weiss, W., On thin-tall scattered spaces, Colloquium Mathematicum, vol. 40 (1978), pp. 6368.
[5]Kunen, K., Set theory, North-Holland, Amsterdam, 1980.
[6]Martínez, J. C., A consistency result on thin-tall superatomic Boolean algebras, Proceedings of the American Mathematical Society, vol. 115 (1992), pp. 473477.
[7]Roitman, J., Height and width of superatomic Boolean algebras, Proceedings of the American Mathematical Society, vol. 94 (1985), pp. 914.
[8]Roitman, J., A very thin thick superatomic Boolean algebra, Algebra Universalis, vol. 21 (1985), pp. 137142.
[9]Roitman, J., Superatomic Boolean algebras, Handbook of Boolean algehras(Monk, J. D. and Bonnet, R., editors), North-Holland, Amsterdam, 1989, pp. 719740.
[10]Velleman, D. J., ω-morasses, and a weak form of Martin's axiom provable in ZFC, Transactions of the American Mathematical Society, vol. 285 (1984),pp. 617627.
[11]Velleman, D. J., Simplified morasses, this Journal, vol. 49 (1984), pp. 257271.
[12]Weese, M., On cardinal sequences of Boolean algebras, Algebra Universalis, vol. 23 (1986), pp. 8597.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed