[1]Addison, J. W., Some consequences of the axiom of constructibility, Fundamenta Mathematicae, vol. 46 (1959), pp. 337–357.

[2]Apt, K. R. and Marek, W., Second order arithmetic and related topics, Annals of Mathematical Logic, vol. 6 (1974), pp. 177–229.

[3]Boolos, G. and Putnam, H., Degrees of unsolvability of constructible sets of integers, this Journal, vol. 33 (1968), no. 4, pp. 497–513.

[4]Boyd, R., Hensel, G., and Putnam, H., A recursion-theoretic characterization of the ramified analytical hierarchy, Transactions of the American Mathematical Society, vol. 141 (1969), pp. 37–62.

[5]Cohen, P. J., Minimal model for set theory, Bulletin of the American Mathematical Society, vol. 69 (1963), pp. 537–540.

[6]Dragalin, A. G., Cut-elimination in the theory of definable sets of natural numbers, Abstracts of the iv-aja vsesojuznaja konferencija po mat. logike, kishinev, 1976, in Russian, p. 45.

[7]Dragalin, A. G., Cut-elimination in the theory of definable sets of natural numbers, Set theory and topology, 1st issue, Udmurt University Press, Izhevsk, 1977, in Russian, pp. 27–36.

[8]Dragalin, A. G., Cut-elimination in the theory of definable sets of natural numbers, Publicationes Mathematkae Debrecen, vol. 51 (1997), no. 1–2, pp. 153–164.

[9]Feferman, S., Constructively provable well-orderings. Notices of the American Mathematical Society, vol. 8 (1961), p. 495.

[10]Feferman, S., Provable well-orderings and relations between predicative and ramified analysis, Notices of the American Mathematical Society, vol. 9 (1962), p. 323.

[11]Feferman, S., Systems of predicative analysis, this Journal, vol. 29 (1964), no. 1, pp. 1–30.

[12]Girard, J. Y., Proof theory and logical complexity, Studies in Proof Theory, vol. 1, Bibliopolis, Napoli, 1988.

[13]Gödel, K., The consistency of the axiom of choice and of the generalized continuum hypothesis, Proceedings of the National Academy of Sciences, USA, vol. 45 (1938), p. 93, reprinted in *Collected works*, vol. II (S. Feferman, editor), Oxford University Press, 1990.

[14]Hájek, P. and Pudlák, P., Metamathematics of first-order arithmetic, 2nd ed., Perspectives in Mathematical Logic, Springer-Verlag, 1998.

[15]Jakubovic, A. M., On the consistency of the theory of types with the axiom of choice relative to the theory of types, Soviet Math. Doklady, vol. 24 (1981), pp. 621–624.

[16]Jensen, R. B., Definable subsets of minimal degree, Mathematical logic and foundations of set theory, Jerusalem, 1968 (Bar-Hillel, Y., editor), 1970, pp. 122–128.

[17]Jensen, R. B. and Johnsbraaten, H., A new construction of a non constructible Δ_{3}^{1} subset of ω, Fundamenta Mathematicae, vol. 81 (1974), pp. 279–290.

[18]Jensen, R. B. and Solovay, R. M., Some applications of almost disjoint sets, Mathematical logic and foundations of set theory, Jerusalem, 1968 (Bar-Hillel, Y., editor), 1970, pp. 84–104.

[19]Kaye, R., Models of Peano arithmetic, Oxford Science Publ., 1991.

[20]Kleene, S. C., Quantification of number-theoretic functions, Compositio Mathematicae, vol. 14, (1959), pp. 23–40.

[21]Kreisel, G., The axiom of choice and the class of hyperarithmetic functions, Dutch Academy A, vol. 65 (1962), pp. 307–319.

[22]Kreisel, G., A survey of proof theory, this Journal, vol. 33 (1998), no. 3, pp. 321–388.

[23]Leeds, S. and Putnam, H., Solution of a problem of Gandy's, Fundamenta Mathematicae, vol. 81 (1974), pp. 99–106.

[24]Mostowski, A., A class of models for second order arithmetic, Bulletin de l'Academie Polonaise des Sciences, vol. 7 (1959), pp. 401–404.

[25]Mostowski, A., Models for second order arithmetic with definable Skolem functions, Fundamenta Mathematicae, vol. 75 (1972), pp. 223–234.

[26]Schütte, K., Predicative well-orderings, North-Holland, 1965.

[27]Simpson, S. G., Subsystems of second order arithmetic, Springer-Verlag, 1999.

[28]Solovay, R. M., A non constructible Δ_{3}^{1} set of integers, Transactions of the American Mathematical Society, vol. 127 (1967), pp. 50–75.

[29]Takeuti, G., Proof theory, North-Holland, 1975.

[30]Zbierski, P., Models for higher order arithmetics, Bulletin de l'Académie Polonaise des Sciences, vol. 19 (1971), no. 7, pp. 557–562.