No CrossRef data available.
Published online by Cambridge University Press: 12 March 2014
The use of Nepomnjaščiǐ's Theorem in the proofs of independence results for bounded arithmetic theories is investigated. Using this result and similar ideas, it is shown that at least one of S 1 or TLS does not prove the Matiyasevich-Robinson-Davis-Putnam Theorem. It is also established that TLS does not prove a statement that roughly means nondeterministic linear time is equal to co-nondeterministic linear time. Here S 1 is a conservative extension of the well-studied theory IΔ0 and TLS is a theory for LOGSPACE reasoning.