INSTITUT DE MATHÉMATIQUES DE JUSSIEU - PARIS RIVE GAUCHE (IMJ-PRG) UNIVERSITÉ PARIS CITÉ INSTITUT UNIVERSITAIRE DE FRANCE BÂTIMENT SOPHIE GERMAIN 8 PLACE AURÉLIE NEMOURS 75013 PARIS FRANCE URL: http://www.automorph.net/avignati
DENIZ YILMAZ
Affiliation:
INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE (IRIF), UNIVERSITÉ PARIS CITÉ BÂTIMENT SOPHIE GERMAIN 8 PLACE AURÉLIE NEMOURS PARIS 75013 FRANCE E-mail: deniz.yilmaz@irif.fr URL: https://denizyilmaz.fr
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
REFERENCES
[1]
Blackadar, B., Operator Algebras, Encyclopaedia of Mathematical Sciences, 122, Springer-Verlag, Berlin, 2006, Theory of
$\mathrm {C^*}$
-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III.CrossRefGoogle Scholar
[2]
Dow, A., A non-trivial copy of
$\beta \mathbb{N}\setminus \mathbb{N}$
. Proceedings of the American Mathematical Society, vol. 142 (2014), no. 8, pp. 2907–2913.10.1090/S0002-9939-2014-11985-XCrossRefGoogle Scholar
[3]
Dow, A., Non-trivial copies of
${\mathbb{N}}^{\ast }$
. Topology and its Applications, vol. 355 (2024), Article no. 109008, 18 pp.10.1016/j.topol.2024.109008CrossRefGoogle Scholar
[4]
Dow, A., Autohomeomorphisms of pre-images of
${\mathbb{N}}^{\ast }$
. Topology and its Applications, vol. 368 (2025), Article no. 109348, 14pp.10.1016/j.topol.2025.109348CrossRefGoogle Scholar
[5]
Dow, A. and Hart, K. P.,
${\omega}^{\ast }$
has (almost) no continuous images. Israel Journal of Mathematics, vol. 109 (1999), pp. 29–39.10.1007/BF02775024CrossRefGoogle Scholar
[6]
Farah, I., Analytic quotients: theory of liftings for quotients over analytic ideals on the integers. Memoirs of the American Mathematical Society, vol. 148 (2000), no. 702, xvi+177.10.1090/memo/0702CrossRefGoogle Scholar
[7]
Farah, I., Dimension phenomena associated with
$\beta \mathbb{N}$
-spaces. Topology and its Applications, vol. 125 (2002), pp. 279–297.10.1016/S0166-8641(01)00281-4CrossRefGoogle Scholar
[8]
Farah, I., Powers of
${\mathbb{N}}^{\ast }$
. Proceedings of the American Mathematical Society, vol. 130 (2002), pp. 1243–1246.10.1090/S0002-9939-01-06191-3CrossRefGoogle Scholar
[9]
Farah, I., The fourth head of
$\beta \mathbb{N}$
, Open Problems in Topology II (Pearl, E., editor), Elsevier, Amsterdam, 2007, pp. 135–142.10.1016/B978-044452208-5/50014-4CrossRefGoogle Scholar
[10]
Farah, I., All automorphisms of the Calkin algebra are inner. Annals of Mathematics (2), vol. 173 (2011), pp. 619–661.10.4007/annals.2011.173.2.1CrossRefGoogle Scholar
[11]
Farah, I., Combinatorial Set Theory and
$\mathbf {C^*}$
-Algebras, Springer Monographs in Mathematics, Springer, Cham (Switzerland), 2019.10.1007/978-3-030-27093-3CrossRefGoogle Scholar
[12]
Farah, I., Ghasemi, S., Vaccaro, A., and Vignati, A., Corona rigidity, The Bulletin of Symbolic Logic. Published online 2025:1–88. doi: 10.1017/bsl.2025.10084.CrossRefGoogle Scholar
[13]
Farah, I. and McKenney, P., Homeomorphisms of Čech–Stone remainders: the zero-dimensional case. Proceedings of the American Mathematical Society, vol. 146 (2018), no. 5, pp. 2253–2262.10.1090/proc/13736CrossRefGoogle Scholar
[14]
Gillman, L. and Jerison, M., Rings of Continuous Functions, Graduate Texts in Mathematics, 43, Springer-Verlag, New York, 1976, Reprint of the 1960 edition.10.1007/978-1-4615-7819-2CrossRefGoogle Scholar
[15]
Just, W., The space
${\left({\omega}^{\ast}\right)}^{n+1}$
is not always a continuous image of
${\left({\omega}^{\ast}\right)}^n$
. Fundamenta Mathematicae, vol. 132 (1989), pp. 59–72.10.4064/fm-132-1-59-72CrossRefGoogle Scholar
[16]
Just, W., A weak version of AT from OCA. MSRI Publications, vol. 26 (1992), pp. 281–291.Google Scholar
[17]
McKenney, P. and Vignati, A., Forcing axioms and coronas of
${C}^{\ast }$
-algebras. Journal of Mathematical Logic, vol. 21 (2021), no. 2, Article no. 2150006, 73 pp.10.1142/S0219061321500069CrossRefGoogle Scholar
[18]
Munkres, J. R., Topology, second ed., Prentice Hall, Inc., Upper Saddle River, NJ, 2000.Google Scholar
[19]
Parovičenko, I. I., A universal bicompact of weight
$\mathrm{\aleph}$
. Soviet Mathematics Doklady, vol. 4 (1963), pp. 592–592.Google Scholar
[20]
Rudin, W., Homogeneity problems in the theory of Čech compactifications. Duke Mathematics Journal, vol. 23 (1956), pp. 409–419.Google Scholar
[21]
Sěmrl, P., Nonlinear perturbations of homomorphisms on
$C(X)$
. The Quarterly Journal of Mathematics Oxford Second Series (2), vol. 50 (1999), no. 197, pp. 87–109.10.1093/qjmath/50.197.87CrossRefGoogle Scholar
[22]
van Douwen, E. K., Prime Mappings, Number of Factors and Binary Operations, Dissertationes Math. (Rozprawy Mat.), Polska Akademia Nauk. Instytut Matematyczny. DissertationesMathematicae. Rozprawy Matematyczne 199, 1981, p. 35.Google Scholar
[23]
van Mill, J., An introduction to
$\beta \omega$
, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, editors), North-Holland, Amsterdam, 1984, pp. 503–567.10.1016/B978-0-444-86580-9.50014-8CrossRefGoogle Scholar
[24]
Vignati, A., Rigidity conjectures for continuous quotients. Annales Scientifiques de l’École Normale Supérieure (4), vol. 55 (2022), no. 6, pp. 1687–1738.10.24033/asens.2526CrossRefGoogle Scholar