Skip to main content Accessibility help
×
Home

Weak square bracket relations for Pκ(λ)

  • Pierre Matet (a1)

Abstract

We study the partition relation that is a weakening of the usual partition relation . Our main result asserts that if κ is an uncountable strongly compact cardinal and , then does not hold.

Copyright

References

Hide All
[1]Landver, A., Singular Baire numbers and related topics, Ph.D. thesis, University of Wisconsin-Madison, 1990.
[2]Cummings, J., Foreman, M., and Magidor, M., Squares, scales and stationary reflection, Journal of Mathematical Logic, vol. 1 (2001), no. 1, pp. 3598.
[3]Donder, H.D., Koepke, P., and Levinski, J.P., Some stationary subsets of P(λ), Proceedings of the American Mathematical Society, vol. 102 (1988), no. 4, pp. 10001004.
[4]Erdős, P., Hajnal, A., and Rado, R., Partition relations for cardinal numbers, Acta Mathematica Academiae Scientiarum Hungaricae, vol. 16 (1965), pp. 93196.
[5]Gitik, M. and Sheiah, S., On certain indestructibility of strong cardinals and a question of Hajnal, Archive for Mathematical Logic, vol. 28 (1989), pp. 3542.
[6]Jech, T., Set theory, 3rd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
[7]Jech, T. and Shelah, S., A partition theorem for pairs of finite sets, Journal of the American Mathematical Society, vol. 4 (1991), no. 4, pp. 647656.
[8]Jensen, R. B., The fine structure of the constructible hierarchy, Annals of Mathematical Logic, vol. 4 (1972), pp. 229308.
[9]Johnson, C. A., Some partition relations for ideals on Pκλ, Acta Mathematica Hungarica, vol. 56 (1990), pp. 269282.
[10]Kanamori, A., On Silver's and related principles, Logic colloquium '80 (Dalen, D. Van, Lascar, D., and Smiley, J., editors), Studies in Logic and the Foundations of Mathematics, vol. 108, North-Holland, Amsterdam, 1982, pp. 153172.
[11]Kanamori, A., The higher infinite, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1994.
[12]Kunen, K., Some applications of iterated ultrapowers in set theory, Annals of Mathematical Logic, vol. 1 (1970), pp. 179227.
[13]Kunen, K., On the GCH at measurable cardinals, Logic colloquium '69 (Gandy, R.O. and Yates, C.E.M., editors), North-Holland, Amsterdam, 1971, pp. 107110.
[14]Matet, P., The covering number for category and partition relations on Pω(λ), Fundamenta Mathematicae, vol. 171 (2002), pp. 235247.
[15]Matet, P., A partition property of a mixed type for P κ(λ), Mathematical Logic Quarterly, vol. 49 (2003), pp. 114.
[16]Matet, P., Covering for category and combinatorics on P κ(λ), Journal of the Mathematical Society of Japan, vol. 58 (2006), pp. 153181.
[17]Matet, P., Part(κ, λ) and Part*(κ, λ), Set theory, Trends in Mathematics, Birkhäuser, Basel, 2006, pp. 319342.
[18]Matet, P., Strong compactness and a partition properly, Proceedings of the American Mathematical Society, vol. 134 (2006), pp. 21472152.
[19]Matet, P., Game ideals, Annals of Pure and Applied Logic, to appear.
[20]Matet, P., Large cardinals and covering numbers, preprint.
[21]Matet, P. and Péan, C., Distributivity properties on Pω(λ), Discrete Mathematics, vol. 291 (2005), pp. 143154.
[22]Matet, P., Péan, C., and Shelah, S., Cofinality of normal ideals on P κ(λ) I, Preprint.
[23]Matet, P., Péan, C., and Shelah, S., Cofinality of normal ideals on P κ(λ). II, Israel Journal of Mathematics, vol. 150 (2005), pp. 253283.
[24]Matet, P., Péan, C., and Todorcevic, S., Prime ideals on P ω(λ) with the partition property, Archive for Mathematical Logic, vol. 41 (2002), pp. 743764.
[25]Matet, P., Rosłanowski, A., and Shelah, S., Cofinality of the nonstationary ideal, Transactions of the American Mathematical Society, vol. 357 (2005), pp. 48134837.
[26]Matet, P. and Shelah, S., Cardinal invariants for κ and partition relations for Pκ(λ), Preprint.
[27]Menas, T. K., A combinatorial property of p κλ, this Journal, vol, 41 (1976), pp. 225234.
[28]Shelah, S., Cardinal arithmetic for skeptics, Bulletin of the American Mathematical Society, vol. 26 (1992), pp. 197210.
[29]Shelah, S., Cardinal arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, Oxford, 1994.
[30]Shelah, S., Further cardinal arithmetic, Israel Journal of Mathematics, vol. 95 (1996), pp. 61114.
[31]Shelah, S., On the existence of large subsets of [λ] which contain no unbounded non-stationary subsets, Archive for Mathematical Logic, vol. 41 (2002), pp. 207213.
[32]Shore, R. A., Square bracket partition relations in L, Fundamenta Mathematicae, vol. 84 (1974), pp. 101106.
[33]Solovay, R. M., Real-valued measurable cardinals, Axiomatic set theory (Scott, D.S., editor), Proceedings of Symposia in Pure Mathematics, Vol. 13, American Mathematical Society, Providence, R.I., 1971, pp. 397428.
[34]Todorčević, S., Coherent sequences, Handbook of set theory (Foreman, M., Kanamori, A., and Magidor, M., editors), Kluwer, Dordrecht, to appear.
[35]Todorčević, S., Partitioning pairs of countable ordinals, Acta Mathematica, vol. 159 (1987), pp. 261294.
[36]Todorčević, S., Partitioning pairs of countable sets, Proceedings of the American Mathematical Society, vol. 111 (1991), pp. 841844.
[37]Velleman, D., Partitioning pairs of countable sets of ordinals, this Journal, vol. 55 (1990), pp. 10191021.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed