Skip to main content Accessibility help
×
×
Home

WOODIN FOR STRONG COMPACTNESS CARDINALS

  • STAMATIS DIMOPOULOS (a1)

Abstract

Woodin and Vopěnka cardinals are established notions in the large cardinal hierarchy and it is known that Vopěnka cardinals are the Woodin analogue for supercompactness. Here we give the definition of Woodin for strong compactness cardinals, the Woodinised version of strong compactness, and we prove an analogue of Magidor’s identity crisis theorem for the first strongly compact cardinal.

Copyright

References

Hide All
[1]Apter, A. W., Laver indestructibility and the class of compact cardinals, this Journal, vol. 63 (1998), no. 1, pp. 149157.
[2]Apter, A. W. and Cummings, J., Identity crises and strong compactness, this Journal, vol. 65 (2000), no. 4, pp. 18951910.
[3]Apter, A. W. and Cummings, J., Identity crises and strong compactness. II. Strong cardinals. Archive for Mathematical Logic, vol. 40 (2001), no. 1, pp. 2538.10.1007/s001530050172
[4]Apter, A. W. and Sargsyan, G., Identity crises and strong compactness. III. Woodin cardinals. Archive for Mathematical Logic, vol. 45 (2006), no. 3, pp. 307322.10.1007/s00153-005-0316-9
[5]Brooke-Taylor, A. D., Indestructibility of Vopěnka’s principle. Archive for Mathematical Logic, vol. 50 (2011), no. 5–6, pp. 515529.10.1007/s00153-011-0228-9
[6]Cody, B., Easton’s theorem in the presence of Woodin cardinals. Archive for Mathematical Logic, vol. 52 (2013), no. 5–6, pp. 569591.10.1007/s00153-013-0332-0
[7]Cummings, J., Iterated forcing and elementary embeddings, Handbook of Set Theory, vol. 1 (Foreman, M. and Kanamori, A., editors), Springer, Dordrecht, 2010, pp. 775883.
[8]Dimopoulos, S., Woodin cardinals and forcing, preprint, 2017, arXiv:1711.02962.
[9]Hamkins, J. D., Extensions with the approximation and cover properties have no new large cardinals. Fundamenta Mathematicae, vol. 180 (2003), no. 3, pp. 257277.10.4064/fm180-3-4
[10]Hamkins, J. D., Forcing and large cardinals, unpublished manuscript.
[11]Jech, T., Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, The third millennium edition, revised and expanded.
[12]Kanamori, A., The Higher Infinite, second ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2009.
[13]Magidor, M., How large is the first strongly compact cardinal? or A study on identity crises. Annals of Mathematical Logic, vol. 10 (1976), no. 1, pp. 3357.10.1016/0003-4843(76)90024-3
[14]Perlmutter, N. L., The large cardinals between supercompact and almost-huge. Archive for Mathematical Logic, vol. 54 (2015), no. 3–4, pp. 257289.10.1007/s00153-014-0410-y
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed