Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-827q6 Total loading time: 0.361 Render date: 2022-01-18T19:24:23.563Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

NEW CONSTRUCTIONS OF SELF-COMPLEMENTARY CAYLEY GRAPHS

Published online by Cambridge University Press:  12 January 2021

CAI HENG LI
Affiliation:
Southern University of Science and Technology, Shenzhen, China e-mail: lich@sustc.edu.cn
GUANG RAO
Affiliation:
The Chinese University of Hong Kong, Shenzhen, China e-mail: raoguang@cuhk.edu.cn
SHU JIAO SONG
Affiliation:
Yantai University, Yantai, China e-mail: shujiao.song@ytu.edu.com

Abstract

Vertex-primitive self-complementary graphs were proved to be affine or in product action by Guralnick et al. [‘On orbital partitions and exceptionality of primitive permutation groups’, Trans. Amer. Math. Soc. 356 (2004), 4857–4872]. The product action type is known in some sense. In this paper, we provide a generic construction for the affine case and several families of new self-complementary Cayley graphs are constructed.

Type
Research Article
Copyright
© 2021 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Communicated by Michael Giudici

This work was partially supported by NSFC (Nos. 61771019, 11701497 and 11771200) and NSFS (No. ZR2017MA022).

References

Alspach, B., Morris, J. and Vilfred, V., ‘Self-complementary circulant graphs’, Ars Combin. 53 (1999), 187191.Google Scholar
Beezer, R. A., ‘Sylow subgraphs in self-complementary vertex transitive graphs’, Expo. Math. 24(2) (2006), 185194.10.1016/j.exmath.2005.09.003CrossRefGoogle Scholar
Berkovic, J. G., ‘Finite metacyclic groups’, Sakharth. SSR Mecn. Akad. Moambe 68 (1972), 529532.Google Scholar
Biggs, N., Algebraic Graph Theory, 2nd edn, Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1993). ISBN: 0-521-45897-8.Google Scholar
Chvátal, V., Erdös, P. and Hedrlín, Z., ‘Ramsey’s theorem and self-complementary graphs’, Discrete Math. 3 (1972), 301304.10.1016/0012-365X(72)90087-8CrossRefGoogle Scholar
Clapham, C. R. J., ‘A class of self-complementary graphs and lower bounds of some Ramsey numbers’, J. Graph Theory 3 (1979), 287289.10.1002/jgt.3190030311CrossRefGoogle Scholar
Figueroa, R. and Giudici, R. E., ‘Group generation of self-complementary graphs’, in: Combinatorics and Graph Theory (Hefei, 1992) (World Scientific, River Edge, NJ, 1993), 131140.Google Scholar
Fronček, D., Rosa, A. and Širáň, J., ‘The existence of selfcomplementary circulant graphs’, European J. Combin. 17 (1996), 625628.10.1006/eujc.1996.0053CrossRefGoogle Scholar
Gorenstein, D. and Herstein, I. N., ‘Finite groups admitting a fixed-point-free automorphism of order 4’, Amer. J. Math. 83 (1961), 7178.10.2307/2372721CrossRefGoogle Scholar
Gulden, F. and Tomasta, P., ‘New lower bounds of some diagonal Ramsey numbers’, J. Graph Theory 7 (1983), 149151.10.1002/jgt.3190070118CrossRefGoogle Scholar
Guralnick, R., Li, C. H., Praeger, C. E. and Saxl, J., ‘On orbital partitions and exceptionality of primitive permutation groups’, Trans. Amer. Math. Soc. 356 (2004), 48574872.10.1090/S0002-9947-04-03396-3CrossRefGoogle Scholar
Hempel, C. E., ‘Metacyclic groups’, Comm. Algebra 28(8) (2000), 38653897.10.1080/00927870008827063CrossRefGoogle Scholar
Huhro, E. I., ‘Finite groups that admit a 2-automorphism without fixed point’, Mat. Zametki 23(5) (1978), 651657.Google Scholar
Jajcay, R. and Li, C. H., ‘Constructions of self-complementary circulants with no multiplicative isomorphisms’, European J. Combin. 22 (2001), 10931100.10.1006/eujc.2001.0529CrossRefGoogle Scholar
Li, C. H. and Praeger, C. E., ‘Self-complementary vertex-transitive graphs need not be Cayley graphs’, Bull. Lond. Math. Soc. 33(6) (2001), 653661.10.1112/S0024609301008505CrossRefGoogle Scholar
Li, C. H. and Praeger, C. E., ‘On partitioning the orbitals of a transitive permutation group’, Trans. Amer. Math. Soc. 355 (2003), 637653.10.1090/S0002-9947-02-03110-0CrossRefGoogle Scholar
Li, C. H. and Praeger, C. E., ‘Finite permutation groups with a transitive cyclic subgroup’, J. Algebra 349 (2012), 117127.10.1016/j.jalgebra.2011.10.021CrossRefGoogle Scholar
Li, C. H. and Rao, G., ‘Self-complementary vertex-transitive graphs of order a product of two primes’, Bull. Aust. Math. Soc. 89(2) (2014), 322330.10.1017/S0004972713000427CrossRefGoogle Scholar
Li, C. H., Rao, G. and Song, S. J., ‘On finite self-complementary metacirculants’, J. Algebraic Combin. 40 (2014), 11351144.10.1007/s10801-014-0522-9CrossRefGoogle Scholar
Li, C. H., Sun, S. H. and Xu, J., ‘Self-complementary circulants of prime-power order’, SIAM J. Discrete Math. 28 (2014), 817. 10.1137/120870025CrossRefGoogle Scholar
Liskovets, V. and Pschel, R., ‘Non-Cayley-isomorphic self-complementary circulant graphs’, J. Graph Theory 34 (2000) 128141.10.1002/1097-0118(200006)34:2<128::AID-JGT2>3.0.CO;2-I3.0.CO;2-I>CrossRefGoogle Scholar
Mathon, R., ‘On self-complementary strongly regular graphs’, Discrete Math. 69 (1988), 263281.10.1016/0012-365X(88)90055-6CrossRefGoogle Scholar
Muzychuck, M., ‘On Sylow subgraphs of vertex-transitive self-complementary graphs’, Bull. Lond. Math. Soc. 31(5) (1999), 531533.10.1112/S0024609399005925CrossRefGoogle Scholar
Rao, S. B., ‘On regular and strongly regular selfcomplementary graphs’, Discrete Math. 54 (1985), 7382.10.1016/0012-365X(85)90063-9CrossRefGoogle Scholar
Rödl, V. and Šiňajová, E., ‘Note on Ramsey numbers and self-complementary graphs’, Math. Slovaca 45 (1995), 155159.Google Scholar
Sachs, H., ‘Über selbstcomplementäre graphen’, Publ. Math. Debrecen 9 (1962), 270288.Google Scholar
Suprunenko, D. A., ‘Selfcomplementary graphs’, Cybernetics 21 (1985), 559567.10.1007/BF01074707CrossRefGoogle Scholar
Zelinka, B., ‘Self-complementary vertex-transitive undirected graphs’, Math. Slovaca 29 (1979), 9195.Google Scholar
Zhang, H., ‘Self-complementary symmetric graphs’, J. Graph Theory 16 (1992), 15.10.1002/jgt.3190160102CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

NEW CONSTRUCTIONS OF SELF-COMPLEMENTARY CAYLEY GRAPHS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

NEW CONSTRUCTIONS OF SELF-COMPLEMENTARY CAYLEY GRAPHS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

NEW CONSTRUCTIONS OF SELF-COMPLEMENTARY CAYLEY GRAPHS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *