Hostname: page-component-cb9f654ff-hn9fh Total loading time: 0 Render date: 2025-09-08T10:07:10.488Z Has data issue: false hasContentIssue false

THE SPECTRAL EIGENVALUES OF A CLASS OF PRODUCT-FORM SELF-SIMILAR SPECTRAL MEASURE

Published online by Cambridge University Press:  21 July 2025

XIAO-YU YAN
Affiliation:
Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics, https://ror.org/053w1zy07 Hunan Normal University , Changsha, Hunan 410081, PR China e-mail: xyyan1103@163.com
WEN-HUI AI*
Affiliation:
Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics, https://ror.org/053w1zy07 Hunan Normal University , Changsha, Hunan 410081, PR China

Abstract

Let $\mu _{M,D}$ be the self-similar measure generated by $M=RN^q$ and the product-form digit set $D=\{0,1,\ldots ,N-1\}\oplus N^{p_1}\{0,1,\ldots ,N-1\}\oplus \cdots \oplus N^{p_s}\{0,1,\ldots ,N-1\}$, where $R\geq 2$, $N\geq 2$, q, $p_i(1\leq i\leq s)$ are integers with $\gcd (R,N)=1$ and $1\leq p_1<p_2<\cdots <p_s<q$. In this paper, we first show that $\mu _{M,D}$ is a spectral measure with a model spectrum $\Lambda $. Then, we completely settle two types of spectral eigenvalue problems for $\mu _{M,D}$. In the first case, for a real t, we give a necessary and sufficient condition under which $t\Lambda $ is also a spectrum of $\mu _{M,D}$. In the second case, we characterize all possible real numbers t such that $\Lambda '\subset \mathbb {R}$ and $t\Lambda '$ are both spectra of $\mu _{M,D}$.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Communicated by Ji Li

The research is supported in part by the NNSF of China (Nos. 12201206 and 12371072) and the Hunan Provincial NSF (No. 2024JJ6301).

References

Ai, W. H., ‘Number theory problems related to the spectrum of Cantor-type measures with consecutive digits’, Bull. Aust. Math. Soc. 103 (2021), 113123.Google Scholar
An, L. X., Fu, X. Y. and Lai, C. K., ‘On spectral Cantor–Moran measures and a variant of Bourgain’s sum of sine problem’, Adv. Math. 349 (2019), 84124.CrossRefGoogle Scholar
Dai, X. R., ‘Spectra of Cantor measures’, Math. Ann. 366 (2016), 16211647.CrossRefGoogle Scholar
Dai, X. R., He, X. G. and Lau, K. S., ‘On spectral $N$ -Bernoulli measures’, Adv. Math. 259 (2014), 511531.CrossRefGoogle Scholar
Dutkay, D., Han, D. G. and Sun, Q. Y., ‘On the spectra of a Cantor measure’, Adv. Math. 221 (2009), 251276.CrossRefGoogle Scholar
Dutkay, D., Han, D. G. and Sun, Q. Y., ‘Divergence of the mock and scrambled Fourier series on fractal measures’, Trans. Amer. Math. Soc. 366 (2014), 21912208.CrossRefGoogle Scholar
Dutkay, D. and Haussermann, J., ‘Number theory problems from the harmonic analysis of a fractal’, J. Number Theory 159 (2016), 726.CrossRefGoogle Scholar
Dutkay, D., Haussermann, J. and Lai, C. K., ‘Hadamard triples generate self-affine spectral measures’, Trans. Amer. Math. Soc. 371 (2019), 14391481.CrossRefGoogle Scholar
Fu, Y. S., He, X. G. and Wen, Z. X., ‘Spectra of Bernoulli convolutions and random convolutions’, J. Math. Pures Appl. (9) 116 (2018), 105131.Google Scholar
Fu, Y. S., Tang, M. W. and Wen, Z. Y., ‘Convergence of mock Fourier series on generalized Bernoulli convolutions’, Acta Appl. Math. 179 (2022), 14.CrossRefGoogle Scholar
Fuglede, B., ‘Commuting self-adjoint partial differential operators and a group theoretic problem’, J. Funct. Anal. 16 (1974), 101121.CrossRefGoogle Scholar
He, X. G., Tang, M. W. and Wu, Z. Y., ‘Spectral structure and spectral eigenvalue problems of a class of self-similar spectral measures’, J. Funct. Anal. 277 (2019), 36883722.CrossRefGoogle Scholar
Hutchinson, J., ‘Fractals and self-similarity’, Indiana Univ. Math. J. 30 (1981), 713747.CrossRefGoogle Scholar
Jorgensen, P. E. T. and Pedersen, S., ‘Dense analytic subspaces in fractal ${L}^2$ spaces’, J. Anal. Math. 75 (1998), 185228.CrossRefGoogle Scholar
Kolountzakis, M. N. and Matolcsi, M., ‘Complex Hadamard matrices and the spectral set conjecture’, Collect. Math. Extra (2006), 281291.Google Scholar
Kolountzakis, M. N. and Matolcsi, M., ‘Tiles with no spectra’, Forum Math. 18 (2006), 519528.CrossRefGoogle Scholar
Łaba, I. and Wang, Y., ‘On spectral Cantor measures’, J. Funct. Anal. 193 (2002), 409420.CrossRefGoogle Scholar
Li, J. J. and Wu, Z. Y., ‘On spectral structure and spectral eigenvalue problems for a class of self similar spectral measure with product form’, Nonlinearity 35 (2022), 30953117.CrossRefGoogle Scholar
Pan, W. Y. and Ai, W. H., ‘Divergence of mock Fourier series for spectral measures’, Proc. Roy. Soc. Edinburgh Sect. A 153 (2023), 18181832.CrossRefGoogle Scholar
Strichartz, R. S., ‘Mock Fourier series and transforms associated with certain Cantor measures’, J. Anal. Math. 81 (2000), 209238.CrossRefGoogle Scholar
Strichartz, R. S., ‘Convergence of mock Fourier series’, J. Anal. Math. 99 (2006), 333353.CrossRefGoogle Scholar
Tao, T., ‘Fuglede’s conjecture is false in 5 and higher dimensions’, Math. Res. Lett. 11 (2004), 251258.CrossRefGoogle Scholar