Skip to main content
×
×
Home

BOUNDARY BEHAVIOR OF SUPERHARMONIC FUNCTIONS SATISFYING NONLINEAR INEQUALITIES IN A PLANAR SMOOTH DOMAIN

  • KENTARO HIRATA (a1)
Abstract

This paper presents a sharp boundary growth estimate for all positive superharmonic functions u in a smooth domain Ω in ℝ2 satisfying the nonlinear inequality where c>0, α∈ℝ and p>0, and δΩ(x) stands for the distance from a point x to the boundary of Ω. A result is applied to show the existence of nontangential limits of such superharmonic functions.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      BOUNDARY BEHAVIOR OF SUPERHARMONIC FUNCTIONS SATISFYING NONLINEAR INEQUALITIES IN A PLANAR SMOOTH DOMAIN
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      BOUNDARY BEHAVIOR OF SUPERHARMONIC FUNCTIONS SATISFYING NONLINEAR INEQUALITIES IN A PLANAR SMOOTH DOMAIN
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      BOUNDARY BEHAVIOR OF SUPERHARMONIC FUNCTIONS SATISFYING NONLINEAR INEQUALITIES IN A PLANAR SMOOTH DOMAIN
      Available formats
      ×
Copyright
References
Hide All
[1]Arsove, M. and Huber, A., ‘On the existence of non-tangential limits of subharmonic functions’, J. London Math. Soc. 42 (1967), 125132.
[2]Chen, Z. Q., Williams, R. J. and Zhao, Z., ‘On the existence of positive solutions of semilinear elliptic equations with Dirichlet boundary conditions’, Math. Ann. 298(3) (1994), 543556.
[3]Chung, K. L. and Zhao, Z., From Brownian Motion to Schrödinger’s Equation, Grundlehren der math. Wissenschaften, 312 (Springer, Berlin, 1995).
[4]Hirata, K., ‘Sharp estimates for the Green function, 3G inequalities, and nonlinear Schrödinger problems in uniform cones’, J. Anal. Math. 99 (2006), 309332.
[5]Hirata, K., ‘The boundary growth of superharmonic functions and positive solutions of nonlinear elliptic equations’, Math. Ann. 340(3) (2008), 625645.
[6]Hunt, R. A. and Wheeden, R. L., ‘Positive harmonic functions on Lipschitz domains’, Trans. Amer. Math. Soc. 147 (1970), 507527.
[7]Littlewood, J. E., ‘On functions subharmonic in a circle (II)’, Proc. London Math. Soc. (2) 28 (1928), 383394.
[8]Mâagli, H. and Mâatoug, L., ‘Singular solutions of a nonlinear equation in bounded domains of R2’, J. Math. Anal. Appl. 270(1) (2002), 230246.
[9]Port, S. C. and Stone, C. J., Brownian Motion and Classical Potential Theory (Academic Press, New York, 1978).
[10]Ufuktepe, U. and Zhao, Z., ‘Positive solutions of nonlinear elliptic equations in the Euclidean plane’, Proc. Amer. Math. Soc. 126(12) (1998), 36813692.
[11]Zhang, Q. S. and Zhao, Z., ‘Singular solutions of semilinear elliptic and parabolic equations’, Math. Ann. 310(4) (1998), 777794.
[12]Zhao, Z., ‘On the existence of positive solutions of nonlinear elliptic equations—a probabilistic potential theory approach’, Duke Math. J. 69(2) (1993), 247258.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed