Skip to main content
×
×
Home

CHARACTERIZING HERMITIAN VARIETIES IN THREE- AND FOUR-DIMENSIONAL PROJECTIVE SPACES

  • ANGELA AGUGLIA (a1)
Abstract

We characterize Hermitian cones among the surfaces of degree $q+1$ of $\text{PG}(3,q^{2})$ by their intersection numbers with planes. We then use this result and provide a characterization of nonsingular Hermitian varieties of $\text{PG}(4,q^{2})$ among quasi-Hermitian ones.

Copyright
Footnotes
Hide All

The author was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA–INdAM).

Footnotes
References
Hide All
[1] Aguglia, A., ‘Quasi-Hermitian varieties in PG(r, q 2), q even’, Contrib. Discrete Math. 8(1) (2013), 3137.
[2] Aguglia, A., Bartoli, D., Storme, L. and Weiner, Zs., ‘A characterization of Hermitian varieties as codewords’, Electron. J. Combin. 25(1) (2018), P1.71.
[3] Aguglia, A., Cossidente, A. and Korchmáros, G., ‘On quasi-Hermitian varieties’, J. Combin. Des. 20(10) (2012), 433447.
[4] Bose, R. C. and Burton, R. C., ‘A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes’, J. Combin. Theory 1 (1966), 96104.
[5] Buekenhout, F., ‘Existence of unitals in finite translation planes of order q 2 with a kernel of order q ’, Geom. Dedicata 5 (1976), 189194.
[6] De Winter, S. and Schillewaert, J., ‘A note on quasi-Hermitian varieties and singular quasi-quadrics’, Bull. Belg. Math. Soc. Simon Stevin 17(5) (2010), 911918.
[7] De Winter, S. and Schillewaert, J., ‘Characterizations of finite classical polar spaces by intersection numbers with hyperplanes and spaces of codimension 2’, Combinatorica 30(1) (2010), 2545.
[8] Hirschfeld, J. W. P., Finite Projective Spaces of Three Dimensions (Oxford University Press, Oxford, 1985).
[9] Hirschfeld, J. W. P., Projective Geometries over Finite Fields, 2nd edn (Oxford University Press, Oxford, 1998).
[10] Hirschfeld, J. W. P., Storme, L., Thas, J. A. and Voloch, J. F., ‘A characterization of Hermitian curves’, J. Geom. 41(1–2) (1991), 7278.
[11] Hirschfeld, J. W. P. and Thas, J. A., General Galois Geometries (Springer, London, 1991).
[12] Homma, M. and Kim, S. J., ‘Around Sziklai’s conjecture on the number of points of a plane curve over a finite field’, Finite Fields Appl. 15(4) (2009), 468474.
[13] Homma, M. and Kim, S. J., ‘Sziklai’s conjecture on the number of points of a plane curve over a finite field III’, Finite Fields Appl. 16(5) (2010), 315319.
[14] Homma, M. and Kim, S. J., ‘The characterization of Hermitian surfaces by the number of points’, J. Geom. 107 (2016), 509521.
[15] Innamorati, S., Zanetti, M. and Zuanni, F., ‘On two character (q 7 + q 5 + q 2 + 1)-sets in PG(4, q 2)’, J. Geom. 106(2) (2015), 287296.
[16] Masaaki, H. and Kim, S. J., ‘Sziklai’s conjecture on the number of points of a plane curve over a finite field II’, in: Finite Fields: Theory and Applications, Contemporary Mathematics, 518 (American Mathematical Society, Providence, RI, 2010), 225234.
[17] Metz, R., ‘On a class of unitals’, Geom. Dedicata 8 (1979), 125126.
[18] Pavese, F., ‘Geometric constructions of two-character sets’, Discrete Math. 338(3) (2015), 202208.
[19] Schillewaert, J. and Thas, J. A., ‘Characterizations of Hermitian varieties by intersection numbers’, Des. Codes Cryptogr. 50 (2009), 4160.
[20] Segre, B., ‘Le geometrie di Galois’, Ann. Mat. Pura Appl. 4(48) (1959), 196.
[21] Segre, B., ‘Forme e geometrie Hermitiane, con particolare riguardo al caso finito’, Ann. Mat. Pura Appl. 70(4) (1965), 1201.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed