Skip to main content
×
×
Home

CONTACT METRIC THREE-MANIFOLDS WITH CONSTANT SCALAR TORSION

  • T. KOUFOGIORGOS (a1) and C. TSICHLIAS (a2)
Abstract

In this paper we study three-dimensional contact metric manifolds satisfying $\Vert \unicode[STIX]{x1D70F}\Vert =\text{constant}$ . The local description, as well as several global results and new examples of such manifolds are given.

Copyright
Corresponding author
References
Hide All
[1] Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds, 2nd edn, Progress in Mathematics, 203 (Birkhäuser, Boston, 2010).
[2] Blair, D. E., Koufogiorgos, T. and Papantoniou, B., ‘Contact metric manifolds satisfying a nullity condition’, Israel J. Math. 91 (1995), 189214.
[3] Calvaruso, G., Perrone, D. and Vanhecke, L., ‘Homogeneity on three-dimensional contact metric manifolds’, Israel J. Math. 114 (1999), 301321.
[4] Chern, S. S. and Hamilton, R. S., On Riemannian Metrics Adapted to Three-Dimensional Contact Manifolds, Lecture Notes in Mathematics, 1111 (Springer, Berlin, 1985), 279305.
[5] Ghosh, A. and Sharma, R., ‘A generalization of K-contact and (𝜅, 𝜇)-contact manifolds’, J. Geom. 103(3) (2012), 431443.
[6] Gouli-Andreou, F. and Moutafi, E., ‘Two classes of pseudosymmetric contact metric 3-manifolds’, Pacific J. Math. 239(1) (2009), 1737.
[7] Gouli-Andreou, F. and Moutafi, E., ‘Three classes of pseudosymmetric contact metric 3-manifolds’, Pacific J. Math. 245(1) (2010), 5777.
[8] Gouli-Andreou, F. and Xenos, P., ‘On 3-dimensional contact metric manifolds with 𝛻𝜉𝜏 = 0’, J. Geom. 62 (1998), 154165.
[9] Koufogiorgos, T., Markellos, M. and Tsichlias, C., ‘Tangent sphere bundles with constant trace of the Jacobi operator’, Beitr. Algebra Geom. 53(2) (2012), 551568.
[10] Koufogiorgos, T. and Tsichlias, C., ‘On the existence of a new class of contact metric manifolds’, Canad. Math. Bull. 43 (2000), 440447.
[11] Koufogiorgos, T. and Tsichlias, C., ‘Three dimensional contact metric manifolds with vanishing Jacobi operator’, Beitr. Algebra Geom. 50(2) (2009), 563573.
[12] Perrone, D., ‘Homogeneous contact Riemannian three-manifolds’, Illinois J. Math. 42(2) (1998), 243256.
[13] Perrone, D., ‘Contact metric manifolds whose characteristic vector field is a harmonic vector field’, Differential Geom. Appl. 20(3) (2004), 367378.
[14] Tanno, S., ‘The topology of contact Riemannian manifolds’, Illinois J. Math. 12 (1968), 700717.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed