Skip to main content



A new class of functions with a unique identification minor is introduced: functions determined by content and singletons. Relationships between this class and other known classes of functions with a unique identification minor are investigated. Some properties of functions determined by content and singletons are established, especially concerning invariance groups and similarity.

Hide All
[1] Berman, J. and Kisielewicz, A., ‘On the number of operations in a clone’, Proc. Amer. Math. Soc. 122 (1994), 359369.
[2] Bóna, M., Combinatorics of Permutations, Discrete Mathematics and Applications (Chapman & Hall/CRC, Boca Raton, FL, 2004).
[3] Bouaziz, M., Couceiro, M. and Pouzet, M., ‘Join-irreducible Boolean functions’, Order 27 (2010), 261282.
[4] Couceiro, M. and Foldes, S., ‘On closed sets of relational constraints and classes of functions closed under variable substitutions’, Algebra Universalis 54 (2005), 149165.
[5] Couceiro, M., Lehtonen, E. and Schölzel, K., ‘A complete classification of equational classes of threshold functions included in clones’, RAIRO Oper. Res. 49 (2015), 3966.
[6] Couceiro, M., Lehtonen, E. and Schölzel, K., ‘Set-reconstructibility of Post classes’, Discrete Appl. Math. 187 (2015), 1218.
[7] Couceiro, M., Lehtonen, E. and Schölzel, K., ‘Hypomorphic Sperner systems and non-reconstructible functions’, Order 32 (2015), 255292.
[8] Ekin, O., Foldes, S., Hammer, P. L. and Hellerstein, L., ‘Equational characterizations of Boolean function classes’, Discrete Math. 211 (2000), 2751.
[9] Grech, M. and Kisielewicz, A., ‘Symmetry groups of Boolean functions’, European J. Combin. 40 (2014), 110.
[10] Horváth, E. K., Makay, G., Pöschel, R. and Waldhauser, T., ‘Invariance groups of finite functions and orbit equivalence of permutation groups’, Open Math. 13 (2015), 8395.
[11] Kisielewicz, A., ‘Symmetry groups of Boolean functions and constructions of permutation groups’, J. Algebra 199 (1998), 379403.
[12] Kitaev, S., Patterns in Permutations and Words, Monogr. Theoret. Comput. Sci. EATCS Ser. (Springer, Heidelberg, 2011).
[13] Lehtonen, E., ‘Totally symmetric functions are reconstructible from identification minors’, Electron. J. Combin. 21(2) (2014), P2.6.
[14] Lehtonen, E., ‘Reconstructing multisets over commutative groupoids and affine functions over nonassociative semirings’, Internat. J. Algebra Comput. 24 (2014), 1131.
[15] Lehtonen, E., ‘On functions with a unique identification minor’, Order 33 (2016), 7180.
[16] Lehtonen, E., ‘Permutation groups arising from pattern involvement’, Preprint, 2016, arXiv:1605.05571v3.
[17] Lehtonen, E. and Pöschel, R., ‘Permutation groups, pattern involvement, and Galois connections’, Acta Sci. Math. (Szeged) 83 (2017), 355375.
[18] Pippenger, N., ‘Galois theory for minors of finite functions’, Discrete Math. 254 (2002), 405419.
[19] Willard, R., ‘Essential arities of term operations in finite algebras’, Discrete Math. 149 (1996), 239259.
[20] Zverovich, I. E., ‘Characterizations of closed classes of Boolean functions in terms of forbidden subfunctions and Post classes’, Discrete Appl. Math. 149 (2005), 200218.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed