We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
An elementary proof is given of a theorem of Castro and Lazer that the degree of the gradient of a coercive functional on a large ball of Rn is one.
Amann, H. (1982), ‘A note on degree theory for gradient mappings’, Proc. Amer. Math. Soc.85, 591–595.CrossRefGoogle Scholar
Castro, A. and Lazer, A. C. (1979), ‘Critical point theory and the number of solutions of a nonlinear Dirichlet problem’, Ann. Mat. Pura Appl.70, 113–137.CrossRefGoogle Scholar
Guillemin, V. and Pollack, A. (1974), Differential topology (Prentice Hall, Englewood Cliffs, N.J.).Google Scholar
McKenzie, R. H. (1982), Gravitational lenses (B. Sc. (Hons.) Thesis, Australian National University).Google Scholar
Milnor, J. (1963), Morse theory (Princeton University Press, Princeton, N.J.).CrossRefGoogle Scholar
Milnor, J. (1965), Topology from a differential viewpoint (University of Virginia Press, Charlottesville, Va.).Google Scholar
Nirenberg, L. (1981), ‘Variational and Topological methods in nonlinear problems’, Bull. Amer. Math. Soc.4, 267–302.CrossRefGoogle Scholar