Skip to main content Accessibility help
×
Home

EFFICIENTLY GENERATED SPACES OF CLASSICAL SIEGEL MODULAR FORMS AND THE BÖCHERER CONJECTURE

  • MARTIN RAUM (a1)

Abstract

We state and verify up to weight 172 a conjecture on the existence of a certain generating set for spaces of classical Siegel modular forms. This conjecture is particularly useful for calculations involving Fourier expansions. Using this generating set, we verify the Böcherer conjecture for nonrational eigenforms and discriminants with class number greater than one. As a further application we verify another conjecture for weights up to 150 and investigate an analog of the Victor–Miller basis. Additionally, we describe some arithmetic properties of the basis we found.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      EFFICIENTLY GENERATED SPACES OF CLASSICAL SIEGEL MODULAR FORMS AND THE BÖCHERER CONJECTURE
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      EFFICIENTLY GENERATED SPACES OF CLASSICAL SIEGEL MODULAR FORMS AND THE BÖCHERER CONJECTURE
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      EFFICIENTLY GENERATED SPACES OF CLASSICAL SIEGEL MODULAR FORMS AND THE BÖCHERER CONJECTURE
      Available formats
      ×

Copyright

References

Hide All
[1]Bergström, J., Faber, C. and van der Geer, G., ‘Siegel modular forms of genus 2 and level 2: cohomological computations and conjectures’, Preprint, 2008.
[2]Böcherer, S., ‘Bemerkungen über die Dirichletreihen von Koecher und Maaß (remarks on the Dirichlet series of Koecher and Maaß)’, Math. Gottingensis 68 (1986), 136.
[3]Böcherer, S. and Schulze-Pillot, R., ‘The Dirichlet series of Koecher and Maaß and modular forms of weight 3/2’, Math. Z. 209 (1992), 273287.
[4]Bosma, W., Cannon, J. and Playoust, C., ‘The Magma algebra system. I. The user language’, J. Symbolic Comput. 24 (1997), 235265.
[5]Brumer, A. and Kramer, K., ‘Abelian surfaces over ℚ’, Preprint, 2009.
[6]Deligne, P., ‘Valeurs de fonctions L et périodes d’intégrales’, in: Automorphic Forms, Representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proceedings of Symposia in Pure Mathematics, XXXIII (American Mathematical Society, Providence, RI, 1979), pp. 313346.
[7]Eichler, M. and Zagier, D., The Theory of Jacobi Forms (Birkhäuser, Boston, MA, 1985).
[8]Gritsenko, V. A., ‘Modulformen zur Paramodulgruppe und Modulräume der abelschen Varietäten’, Math. Gottingensis 12 (1995), 189.
[9]Igusa, J., ‘On Siegel modular forms of genus two’, Amer. J. Math. 84 (1962), 175200.
[10]Kohnen, W. and Kuß, M., ‘Some numerical computations concerning spinor zeta functions in genus 2 at the central point’, Math. Comp. 71(240) (2002), 15971607.
[11]Kohnen, W. and Zagier, D., Modular forms with rational periods’, Modular forms, Durham Symposium, England, 1983, 197–249, 1984.
[12]Krieg, A. and Raum, M., ‘The functional equation for the twisted spinor-L-function of genus 2’, arXiv:0907.2767 [math.NT].
[13]Poor, C. and Yuen, D., ‘Paramodular cups forms’, 2009, arXiv:0912.0049v1 [math.NT].
[14]Raum, M., ‘A computational approach to the Böcherer conjecture’, talk at the AKLS meeting Cologne, May 5th 2010.
[15]Raum, M., Ryan, N., Skoruppa, N. P. and Tornaría, G., ‘Theoretical and algorithmic aspects of an implementation of siegel modular forms’, Preprint, 2010.
[16]Ryan, N. C. and Tornaría, G., ‘A Böcherer-type conjecture for paramodular forms’, 2010, http://arxiv.org/abs/1006.1582v1 [math.NT].
[17]Skoruppa, N. P., ‘Computations of Siegel modular forms of genus two’, Math. Comp. 58(197) (1992), 381398.
[18]Stein, W. A.et al., ‘Sage mathematics software (version 4.1.2)’, 2009, http://www.sagemath.org.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

EFFICIENTLY GENERATED SPACES OF CLASSICAL SIEGEL MODULAR FORMS AND THE BÖCHERER CONJECTURE

  • MARTIN RAUM (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.