Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-dxgz2 Total loading time: 0.266 Render date: 2021-05-14T14:43:33.366Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

EFFICIENTLY GENERATED SPACES OF CLASSICAL SIEGEL MODULAR FORMS AND THE BÖCHERER CONJECTURE

Published online by Cambridge University Press:  01 April 2011

MARTIN RAUM
Affiliation:
MPI für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany (email: MRaum@mpim-bonn.mpg.de)
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

We state and verify up to weight 172 a conjecture on the existence of a certain generating set for spaces of classical Siegel modular forms. This conjecture is particularly useful for calculations involving Fourier expansions. Using this generating set, we verify the Böcherer conjecture for nonrational eigenforms and discriminants with class number greater than one. As a further application we verify another conjecture for weights up to 150 and investigate an analog of the Victor–Miller basis. Additionally, we describe some arithmetic properties of the basis we found.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

References

[1]Bergström, J., Faber, C. and van der Geer, G., ‘Siegel modular forms of genus 2 and level 2: cohomological computations and conjectures’, Preprint, 2008.Google Scholar
[2]Böcherer, S., ‘Bemerkungen über die Dirichletreihen von Koecher und Maaß (remarks on the Dirichlet series of Koecher and Maaß)’, Math. Gottingensis 68 (1986), 136.Google Scholar
[3]Böcherer, S. and Schulze-Pillot, R., ‘The Dirichlet series of Koecher and Maaß and modular forms of weight 3/2’, Math. Z. 209 (1992), 273287.CrossRefGoogle Scholar
[4]Bosma, W., Cannon, J. and Playoust, C., ‘The Magma algebra system. I. The user language’, J. Symbolic Comput. 24 (1997), 235265.CrossRefGoogle Scholar
[5]Brumer, A. and Kramer, K., ‘Abelian surfaces over ℚ’, Preprint, 2009.Google Scholar
[6]Deligne, P., ‘Valeurs de fonctions L et périodes d’intégrales’, in: Automorphic Forms, Representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proceedings of Symposia in Pure Mathematics, XXXIII (American Mathematical Society, Providence, RI, 1979), pp. 313346.Google Scholar
[7]Eichler, M. and Zagier, D., The Theory of Jacobi Forms (Birkhäuser, Boston, MA, 1985).CrossRefGoogle Scholar
[8]Gritsenko, V. A., ‘Modulformen zur Paramodulgruppe und Modulräume der abelschen Varietäten’, Math. Gottingensis 12 (1995), 189.Google Scholar
[9]Igusa, J., ‘On Siegel modular forms of genus two’, Amer. J. Math. 84 (1962), 175200.CrossRefGoogle Scholar
[10]Kohnen, W. and Kuß, M., ‘Some numerical computations concerning spinor zeta functions in genus 2 at the central point’, Math. Comp. 71(240) (2002), 15971607.CrossRefGoogle Scholar
[11]Kohnen, W. and Zagier, D., Modular forms with rational periods’, Modular forms, Durham Symposium, England, 1983, 197–249, 1984.Google Scholar
[12]Krieg, A. and Raum, M., ‘The functional equation for the twisted spinor-L-function of genus 2’, arXiv:0907.2767 [math.NT].Google Scholar
[13]Poor, C. and Yuen, D., ‘Paramodular cups forms’, 2009, arXiv:0912.0049v1 [math.NT].Google Scholar
[14]Raum, M., ‘A computational approach to the Böcherer conjecture’, talk at the AKLS meeting Cologne, May 5th 2010.Google Scholar
[15]Raum, M., Ryan, N., Skoruppa, N. P. and Tornaría, G., ‘Theoretical and algorithmic aspects of an implementation of siegel modular forms’, Preprint, 2010.Google Scholar
[16]Ryan, N. C. and Tornaría, G., ‘A Böcherer-type conjecture for paramodular forms’, 2010, http://arxiv.org/abs/1006.1582v1 [math.NT].Google Scholar
[17]Skoruppa, N. P., ‘Computations of Siegel modular forms of genus two’, Math. Comp. 58(197) (1992), 381398.CrossRefGoogle Scholar
[18]Stein, W. A.et al., ‘Sage mathematics software (version 4.1.2)’, 2009, http://www.sagemath.org.Google Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

EFFICIENTLY GENERATED SPACES OF CLASSICAL SIEGEL MODULAR FORMS AND THE BÖCHERER CONJECTURE
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

EFFICIENTLY GENERATED SPACES OF CLASSICAL SIEGEL MODULAR FORMS AND THE BÖCHERER CONJECTURE
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

EFFICIENTLY GENERATED SPACES OF CLASSICAL SIEGEL MODULAR FORMS AND THE BÖCHERER CONJECTURE
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *