Skip to main content Accessibility help
×
Home
Hostname: page-component-846f6c7c4f-k2x4h Total loading time: 0.23 Render date: 2022-07-07T14:31:38.344Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

FACTORS OF CARMICHAEL NUMBERS AND A WEAK $k$-TUPLES CONJECTURE

Published online by Cambridge University Press:  17 November 2015

THOMAS WRIGHT*
Affiliation:
Department of Mathematics, Wofford College, 429 N. Church St., Spartanburg, SC 29302, USA email wrighttj@wofford.edu
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In light of the recent work by Maynard and Tao on the Dickson $k$-tuples conjecture, we show that with a small improvement in the known bounds for this conjecture, we would be able to prove that for some fixed $R$, there are infinitely many Carmichael numbers with exactly $R$ factors for some fixed $R$. In fact, we show that there are infinitely many such $R$.

MSC classification

Type
Research Article
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Alford, W. R., Grantham, J., Hayman, S. and Shallue, A., ‘Constructing Carmichael numbers through improved subset-product algorithms’, Math. Comp. 83 (2014), 899915.CrossRefGoogle Scholar
Alford, W. R., Granville, A. and Pomerance, C., ‘There are infinitely many Carmichael numbers’, Ann. of Math. (2) 139(3) (1994), 703722.CrossRefGoogle Scholar
Carmichael, R. D., ‘Note on a new number theory function’, Bull. Amer. Math. Soc. 16 (1910), 232238.CrossRefGoogle Scholar
Chernick, J., ‘On Fermat’s simple theorem’, Bull. Amer. Math. Soc. 45 (1939), 269274.CrossRefGoogle Scholar
Van Emde Boas, P. and Kruyswijk, D., ‘A combinatorial problem on finite Abelian groups III’, Report ZW 1969-008, Stichting Mathematisch Centrum, Amsterdam, 1969.Google Scholar
Granville, A. and Pomerance, C., ‘Two contradictory conjectures concerning Carmichael numbers’, Math. Comp. 71 (2002), 883908.CrossRefGoogle Scholar
Korselt, A., ‘Problème chinois’, L’intermédinaire des Mathématiciens 6 (1899), 142143.Google Scholar
Matomäki, K., ‘On Carmichael numbers in arithmetic progressions’, J. Aust. Math. Soc. 2 (2013), 18.Google Scholar
Maynard, J., ‘Small gaps between primes’, Ann. of Math. (2) 181 (2015), 383413.CrossRefGoogle Scholar
Meshulam, R., ‘An uncertainty inequality and zero subsums’, Discrete Math. 84(2) (1990), 197200.CrossRefGoogle Scholar
Wright, T., ‘Infinitely many Carmichael numbers in arithmetic progressions’, Bull. Lond. Math. Soc. 45 (2013), 943952.CrossRefGoogle Scholar
You have Access
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

FACTORS OF CARMICHAEL NUMBERS AND A WEAK $k$-TUPLES CONJECTURE
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

FACTORS OF CARMICHAEL NUMBERS AND A WEAK $k$-TUPLES CONJECTURE
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

FACTORS OF CARMICHAEL NUMBERS AND A WEAK $k$-TUPLES CONJECTURE
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *